COMPARISON OF SPEEDS OF CONVERGENCE IN SOME FAMILIES OF FUNCTIONAL SUMMABILITY METHODS

Anna Šeletski and Anne Tali

Tallinn University
E-mail: annatar@hot.ee, atali@tlu.ee

2000 MSC: 40C10, 40C15, 40G05, 40G10

We compare speeds of convergence in certain families of summability methods for functions.

1. Let us consider the functions \(x = x(u) \) defined for \(u \geq 0 \), bounded and measurable by Lebesgue on every finite interval \([0, u_0]\). Let us denote the set of all these functions by \(X \).

Let us denote the set of all these functions by \(X \).

Suppose that \(A \) is a transformation of functions \(x = x(u) \) (or, in particular, of sequences \(x = (x_n) \)) into functions \(Ax = y = y(u) \in X \). If the limit \(\lim_{u \to \infty} y(u) = s \) exists then we say that \(x \) is convergent to \(s \) with respect to the summability method \(A \), and write \(x(u) \to s(A) \).

If the function \(y = y(u) \) is bounded then we say that \(x \) is bounded with respect to the method \(A \), and write \(x(u) = O(A) \).

We denote by \(\omega_A \) the set of all these functions \(x \), where the transformation \(A \) is applied. The summability method \(A \) is said to be regular if

\[
\lim_{u \to \infty} x(u) = s \implies \lim_{u \to \infty} y(u) = s
\]

whenever \(x \in X \).

The most common summability method for functions \(x \) is an integral method \(A \) defined with the help of transformation

\[
y(u) = \int_0^\infty a(u, v) x(v) dv
\]

where \(a(u, v) \) is certain function of two variables \(u \geq 0 \) and \(v \geq 0 \).

For sequences \(x = (x_n) \) we do not consider in our paper the matrix methods (which are the most common summability methods) but focus ourselves on certain semi-continuous summability methods \(A \) defined by transformations

\[
y(u) = \sum_{n=0}^\infty a_n(u) x_n \quad (u \geq 0)
\]

where \(a_n(u) \) \((n = 0, 1, 2, \ldots)\) are some functions from \(X \).

One of the basic notions in our paper is the notion of speed of convergence. We follow here the definitions given for sequences in [4] and [5].

Let \(\lambda = \lambda(u) \) be a positive function from \(X \) such that \(\lambda(u) \to \infty \) as \(u \to \infty \). We say that a function \(x = x(u) \) is convergent to \(s \) with speed \(\lambda \) if the finite limit

\[
\lim_{u \to \infty} \lambda(u) |x(u) - s|
\]

exists. Note that the limit can be zero. If we have

\[
\lambda(u) |x(u) - s| = O(1)
\]

as \(u \to \infty \) then \(x \) is said to be bounded with speed \(\lambda \). We use the notations \(c^\lambda \) and \(m^\lambda \) for the sets of all these functions \(x = x(u) \) which are convergent to some \(s \) with speed \(\lambda \) and bounded
with speed λ, respectively. In the obvious manner the notion of speed can be transferred to summability methods. We say that x is convergent or bounded with speed λ with respect to the summability method A if $Ax \in c^\lambda$ or $Ax \in m^\lambda$, respectively.

2. We discuss the Riesz-type families $\{A_\alpha\}$ of summability methods A_α where $\alpha > \alpha_1$ and α_1 is some fixed number (see [6], [9]).

Definition. A family $\{A_\alpha\}$ ($\alpha > \alpha_1$) is said to be a Riesz-type family if for every $\beta > \gamma > \alpha_1$ the relation $\omega A_\gamma \subset \omega A_\beta$ holds and the methods A_γ and A_β are connected through

$$y_\beta(u) = \frac{M_{\gamma,\beta}}{r_\beta(u)} \int_0^u (u-v)^{\beta-\gamma-1} r_\gamma(v) y_\gamma(v) \, dv \quad (u > 0),$$

(1)

where $r_\gamma = r_\gamma(u)$ and $r_\beta = r_\beta(u)$ are some positive functions from X related through

$$r_\beta(u) = M_{\gamma,\beta} \int_0^u (u-v)^{\beta-\gamma-1} r_\gamma(v) \, dv \quad (u > 0)$$

(2)

and $M_{\gamma,\beta}$ is a constant depending on γ and β.

In other words, a Riesz-type family is a family where every two methods are connected through the connection formula

$$A_\beta = C_{\gamma,\beta} \circ A_\gamma \quad (\beta > \gamma > \alpha_1),$$

where $C_{\gamma,\beta}$ is the transformation defined by relations (1) and (2).

Example 1. Let $\{A_\alpha\}$ be the family of generalized integral Nörlund methods $(N, p_\alpha(u), q(u))$ ($\alpha > 0$) defined with the help of transformation

$$y_\alpha(u) = \frac{1}{r_\alpha(u)} \int_0^u p_\alpha(u-v) q(v) x(v) \, dv,$$

where

$$r_\alpha(u) = \int_0^u p_\alpha(u-v) q(v) \, dv > 0,$$

$$p_\alpha(u) = \int_0^u (u-v)^{\alpha-1} p(v) \, dv \quad (u > 0, \ \alpha > 0)$$

and $p = p(u) \in X$ and $q = q(u) \in X$ are some positive functions. It is known that the relations (1) together with (2) and

$$M_{\gamma,\beta} = \frac{\Gamma(\beta)}{\Gamma(\gamma) \Gamma(\beta-\gamma)}$$

hold for any $\beta > \gamma > 0$ (see [10]), and thus this family is a Riesz-type family. In particular, if $p(u) = q(u) = 1$ ($u \geq 0$) we get the Riesz methods (R, α) (see [3]).

Example 2. Consider the family $\{A_\alpha\}$ of Borel-type methods $A_\alpha = (B, \alpha, q_n)$ (see [9]). Let (q_n) be a non-negative sequence with $q_0 > 0$ such that the power series $\sum q_n u^n$ has the radius of convergence $R = \infty$ and $q_n > 0$ at least for one $n \in \mathbb{N}$. Denote

$$r_\alpha(u) = \sum_{n=1}^{\infty} \frac{n! q_n u^{n+\alpha-1}}{\Gamma(n+\alpha)}$$
and define the methods \((B, \alpha, q_n)\) \((\alpha > -1/2)\) for converging sequences \(x = (x_n)\) with the help of transformation
\[
y_{\alpha}(u) = \frac{1}{r_{\alpha}(u)} \sum_{n=1}^{\infty} n! q_n u^{n+\alpha-1} x_n \quad (u > 0).
\]
The methods \((B, \alpha, q_n)\) satisfy the relations (1) and (2) with \(M_{\gamma, \beta} = 1/\Gamma(\beta - \gamma)\) (see \([9]\)). Thus \(\{A_\alpha\}\) is a Riesz-type family. In particular, if \(q_n = \frac{1}{n!}\) we get the Borel-type methods \((B, \alpha) = (B, \alpha, 1/n!)\) (see \([1], [2]\)). If, in addition, \(\alpha = 1\) then we get the Borel method \(B = (B, 1)\).

The Riesz-type family \(\{A_\alpha\}\) has the property of monotony.

Proposition. Let \(\{A_\alpha\}\) \((\alpha > (\gamma_1)\alpha_1)\) be a Riesz-type family. Then we have for functions \(x = x(u)\) and numbers \(s\) and \(\beta > \gamma > (\gamma_1)\alpha_1\) that
\[
x(u) = O(A_{\gamma}) \implies x(u) = O(A_{\beta}) \quad \text{and} \quad x(u) \to s(A_{\gamma}) \implies x(u) \to s(A_{\beta}),
\]
provided that the condition
\[
\lim_{u \to \infty} \int_0^u r_{\alpha_1}(v) \, dv = \infty
\]
is satisfied if \(\gamma = \alpha_1\) is included.

3. The following theorem was published in recent paper \([7]\).

Theorem. Let \(\{A_\alpha\}\) \((\alpha > \alpha_0)\) be a Riesz-type family. Let be given some positive function \(\lambda = \lambda(u) \to \infty\) from \(X\) and some number \(\gamma > \alpha_0\) such that \(r_{\alpha}(u) / \lambda(u) \in X\).

(i) Then we have for functions \(x = x(u)\) and numbers \(s\) and \(\beta \geq \gamma\) that
\[
\lambda(u) [y_{\gamma}(u) - s] = O(1) \implies \lambda_{\beta}(u) [y_{\beta}(u) - s] = O(1),
\]
where the speeds are related through the formulas
\[
\lambda_{\beta}(u) = \frac{r_{\beta}(u)}{b_{\beta}(u)} \quad \text{with} \quad b_{\beta}(u) = M_{\gamma, \beta} \int_0^u (u - v)^{\beta - \gamma - 1} b_{\gamma}(v) \, dv \quad \text{and} \quad b_{\gamma}(u) = \frac{r_{\gamma}(u)}{\lambda(u)}.
\]

(ii) Moreover, we have that
\[
\lambda(u) [y_{\gamma}(u) - s] \to t \implies \lambda_{\beta}(u) [y_{\beta}(u) - s] \to t,
\]
provided that
\[
\lim_{u \to \infty} \int_0^u b_{\gamma}(v) \, dv = \infty.
\]

Relations (3) and (5) can be also written as
\[
A_{\gamma} x \in m^\lambda \implies A_{\beta} x \in m^{\lambda_{\beta}}
\]
and
\[
A_{\gamma} x \in c^\lambda \implies A_{\beta} x \in c^{\lambda_{\beta}},
\]
respectively.

We remark that Theorem can be seen as an extension of Theorem 1 from \([8]\) which is given for matrix summability methods. Theorem can be applied to special Riesz-type families in order to get comparative estimations for speeds of convergence.
Example 3. Let us consider the family of Riesz methods $A_\alpha = (R, \alpha)$ ($\alpha > 0$). Let us choose the speed of convergence $\lambda(u) = (u + 1)^\rho$ ($\rho > 0$) and some number $\gamma > 0$.
Suppose that $x = x(u)$ is a function having given speed of convergence $\lambda(u)$ with respect to the method $A_\gamma = (R, \gamma)$ ($\gamma > 0$) and determine with the help of conditions (4) the speed of convergence $\lambda_\beta(u)$ of $x = x(u)$ with respect to the methods $A_\beta = (R, \beta)$ for $\beta > \gamma$. As a result, we get the following estimations:

$$
\lambda_\beta(u) \sim \frac{\Gamma(\gamma + 1) \Gamma(\beta - \rho + 1)}{\Gamma(\beta + 1) \Gamma(\gamma - \rho + 1)} \lambda(u) \quad \text{if } \rho < \gamma + 1,
$$

$$
\lambda_\beta(u) \approx \begin{cases}
\frac{\lambda(u)}{\log u} & \text{if } \rho = \gamma + 1, \\
\lambda(u) u^{\gamma - \rho + 1} & \text{if } \rho > \gamma + 1.
\end{cases}
$$

REFERENCES