The associations between peak O_2 consumption and leptin in 10- to 12-year-old boys
Antonio Cicchella¹, Claudio Stefanelli¹, Prit Purge², Evelin Lätt², Meeli Saar² and Toivo Jürimäe²

¹Department of Sciences for Quality of Life, University of Bologna, Rimini, Italy and ²Faculty of Exercise and Sport Sciences, University of Tartu, Tartu, Estonia

Correspondence
Toivo Jürimäe, Faculty of Exercise and Sport Sciences, University of Tartu, Jakobi 5, Tartu, Estonia
E-mail: toivo.jurimae@ut.ee

Accepted for publication
Received 21 September 2012; accepted 14 January 2013

Key words
adipokynes; aerobic capacity; anthropometry; boys; fat tissue

Summary

The aim of this study was to assess the associations of circulating levels of leptin with the peak O_2 consumption (VO$_{peak}$) in 10- to 12-year-old boys of different BMI selected by Cole et al. (BMJ, 320,2000,1–6): total group ($n = 248$), normal ($n = 190$), overweight ($n = 34$) and obese ($n = 24$). We hypothesized that there is a close relationship in overweight and obese subgroups of boys with relative VO$_{peak}$ kg$^{-1}$ (ml min$^{-1}$ kg$^{-1}$) and leptin. Most of the subjects were Tanner stage 2. Peak O_2 consumption was measured directly using an increasing incremental protocol until volitional exhaustion on an electronically braked cycle ergometer. The expired gas was sampled continuously breath-by-breath mode for the measurement of oxygen consumption (MetaMax, Germany). Blood samples were obtained after an overnight fast from an antecubital vein for leptin measurements. Peak O_2 consumption (l min$^{-1}$) was higher or lower (ml min$^{-1}$ kg$^{-1}$) in overweight and obese groups, compared with normal BMI group. Leptin was higher in overweight and obese groups, compared with normal BMI groups. Peak O_2 consumption (l min$^{-1}$) correlated significantly with leptin only in total group ($n = 248, r = 0.196$). Contrary, relative VO$_{peak}$ kg$^{-1}$ correlated significantly and negatively with leptin. The relationship was highest on the total group ($r = -0.674$). We can conclude that leptin first of all correlated negatively with relative peak O_2 consumption. Absolute VO$_{peak}$ correlated with leptin only in total group.

Introduction

Leptin is an adipocyte derived 16-kDa hormone, produced by white adipose cells, that, among other functions, has the capacity to regulate appetite, acting on the central nervous system receptors probably through its action on the neuropeptide Y (Kraemer et al., 2002). It is a major regulator in the organism of energy uptake and homeostasis (Kraemer et al., 2002). Leptin expression is greater in subcutaneous than in visceral adipose tissue (Moro et al., 1998).

In mice, it was proven that leptin deficiency predisposed to worsening neuro mechanical upper airway function and administration of leptin in leptin-deficient mice increased minute ventilation, suggesting that its central effect in the leptin-deficient mice model may be attributable to a generalised increase in ventilator drive. Further, both obesity and leptin deficiency were associated with elevations in passive air resistance in respiratory tract and with marked decreases in active pharyngeal neuromuscular responses (Polotsky et al., 2012). Inflammatory processes mediated by other adipokynes can contribute to worsening the respiratory functions in obese (Alesandrova, 2012).

While leptin is being produced mainly by subcutaneous fat tissue, hexogen leptin in deficient subjects may stimulate oxidative phosphorylation, mitochondrial biogenesis and insulin signalling, the net effects of which may result in improvements in aerobic exercise capacity and metabolic homeostasis (Miller et al., 2001). Contrary, hyperleptinemia in obese may reflect resistance to leptin at a cellular level and thus a decline in aerobic capacity (Franks et al., 2007).

Some studies exist considering energy expenditure at rest rather than peak O_2 consumption (VO$_{peak}$) in association with leptin levels (Nagy et al., 1997; Salbe et al., 1997; Bishop, 1999), as higher energy expenditure at rest is known to be positively related to VO$_{peak}$ (Bishop, 1999). These studies can be helpful in understanding the leptin/VO$_{peak}$ association. In prepubertal children, Nagy et al. (1997) did not find any direct effect of leptin and no indirect effect of fat mass (through leptin) on any measure of energy expenditure at rest. While in contrast, Salbe et al. (1997) found in a sample of 123 five-year-old Pima Indian children, a significant correlation between rest energy expenditure measured by the doubly labelled water method and leptin levels. These differences can be explained with the presence of females in the Salbe...
et al. (1997) study, who are known to have higher levels of leptin than males. However, probably the difference in physical activity, body composition, eating habits, etc. may influence the relationship between energy expenditure and leptin.

Studies on the relationship between leptin and VO_{2peak} in adults show a positive correlation (Ostlund et al., 1996; Miller et al., 2001). Very limited studies exist on the relationships between leptin and VO_{2peak} in children and adolescents (Roemmich et al., 1998). Roemmich et al. (1998) in a sample of 16 prepubertal and 13 pubertal normal and overweight boys did not find this relationship. Also, leptin levels are known to increase with puberty in the Roemmich et al. (1998) study.

The relationship between leptin and VO_{2peak} is not completely clear in children of different BMI, because the existing previous studies produced conflicting results, failing to found an association in normal subjects (Roemmich et al., 1998; Hosick et al., 2010) or were conducted with normal and overweight children, but not with obese children (Hosick et al., 2010).

We hypothesized that there is a negative relationship in overweight and obese subgroups of boys with relative VO_{2peak} (ml min^{-1} kg^{-1}) and leptin.

The aim of this study was to assess the associations of circulation levels of leptin with the peak O_{2} consumption in 10–12-year-old boys with different BMI.

Material and methods

Subjects of this study were a cross sectional sample of 248 healthy boys (age 10–12 years) from different schools from the city of Tartu and surroundings (Estonia). They all were included into the routine physical education classes at school. This study is a part of a larger longitudinal project investigating the metabolic syndrome risk factors in boys during pubertal development. Almost all boys in particular class whose parents agreed were tested. This study was approved by the Medical Ethics Committee of the University of Tartu (Estonia). The subjects were considered as a whole group and also divided according to Cole et al. (2000) into three body mass index (BMI, kg m^{-2}) subgroups as normal (<19.8–21.9, n = 190), overweight (≥19.8–21.9 and ≥24–26.8, n = 34) and obese (<24–26.8, n = 24).

Body height was measured using a Martin metal anthropometer to the nearest 0.1 cm with a standard technique. Body mass was measured with minimal clothing to the nearest 0.05 kg using a medical electronic scale (AKD instruments, Abingdon, UK), and BMI was calculated as body mass (kg) divided by height squared (m^{2}). Pubertal development of the participants was assessed based on self-assessment using an illustrated questionnaire of pubertal stages according to Tanner classification method (Tanner, 1962).

Peak O_{2} consumption was measured directly using an incremental exercise test protocol until volitional exhaustion on an electronically braced cycle ergometer (Corival V3, Lode, Netherlands). Initial work rate was 60 W and increments 25 W after every 3 min until volitional exhaustion. Pedalling rate was set 70 rpm. Subjects were verbally encouraged to produce the maximal effort. The expired gas during cycle ergometer test was sampled continuously in breath-by-breath mode for the measurement of O_{2} consumption using a portable open circuit spirometry system (MetaMax 3B Cortex, Leipzig, Germany). All data were calculated by means of computer analysis using standard software (MetaMax-Analysis 3-21, Cortex, Leipzig, Germany). Peak oxygen uptake (VO_{2peak} 1 min) was measured, and VO_{2peak} per kilogram of body mass was calculated. VO_{2peak} consumption values were considered acceptable when two of the following three criteria were met (Petterson et al., 2001): (i) VO_{2} plateau defined as a failure of oxygen uptake to increase by greater than 2.0 ml kg^{-1} min^{-1} with increased test load, (ii) Heart rate ≥95% from the predicted individual maximum (formula 220–age) and/or (iii) respiratory exchange ratio ≥1.05.

To determine the concentration of leptin, blood samples were obtained after an overnight fast from an antecubital vein with the participant in the sitting position between 8:00 and 9:00 a.m. The blood serum was separated and frozen at −80°C for later analysis. Leptin concentrations were determined by an Elisa sandwich method using a kit from Medignost (GmbH, Reutlingen, Germany). The intra- and inter-assay CV-s were less than 10%.

Statistical analysis was performed with SPSS 18.0. Normal distribution of data was controlled, and data which were not normally distributed were log-transformed. Descriptive statistics (mean ± SD) were calculated. Differences between groups were analysed using ANOVA (LSD post hoc). Partial correlation was used to find relationships between leptin concentration and peak O_{2} consumption controlling for age and pubertal status. Stepwise regression analysis was performed to find out which parameter of peak oxygen consumption (l min^{-1} or ml min^{-1} kg^{-1}) affects leptin concentration most after controlling for age and pubertal status. Leptin was inserted in the model as dependent parameter, and VO_{2peak} and VO_{2peak} kg^{-1} as independent parameters. The level of significance was at P<0.05 for all statistical analysis.

Results

Mean anthropometric parameters, Tanner stages, leptin and peak O_{2} consumption in different groups are presented in Table 1. There were not any significant (P>0.05) differences between groups in mean age, Tanner stage and body height. Body mass and BMI were higher in overweight and obese groups compared with normal BMI group. Peak O_{2} consumption was significantly higher (l min^{-1}) or significantly lower (ml min^{-1} kg^{-1}) in overweight and obese groups, respectively (Table 1). Leptin was significantly higher (P<0.05) in overweight and obese groups compared with normal BMI group. All the subjects were about Tanner stage 2 (Table 1).
Table 1 Mean (± SD) anthropometrical parameters, Tanner’s stage, peak O\(_2\) consumption and blood leptin concentration in boys.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total group (n = 248)</th>
<th>Normal BMI group (n = 190)</th>
<th>Overweight (n = 34)</th>
<th>Obese (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>11.18 ± 0.65</td>
<td>11.13 ± 0.65</td>
<td>11.12 ± 0.56</td>
<td>11.36 ± 0.73</td>
</tr>
<tr>
<td>Body height (cm)</td>
<td>149.5 ± 7.7</td>
<td>148.6 ± 7.5</td>
<td>151.6 ± 6.4*</td>
<td>155.1 ± 8.4*</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>43.3 ± 11.5</td>
<td>38.1 ± 5.9</td>
<td>52.5 ± 5.7*</td>
<td>69.4 ± 11.6*</td>
</tr>
<tr>
<td>BMI (kg m(^{-2}))</td>
<td>19.2 ± 4.3</td>
<td>17.1 ± 1.6</td>
<td>22.7 ± 1.5*</td>
<td>29.2 ± 3.2*</td>
</tr>
<tr>
<td>Leptin (ng ml(^{-1}))</td>
<td>7.63 ± 10.92</td>
<td>3.38 ± 4.10</td>
<td>13.71 ± 8.14*</td>
<td>32.61 ± 13.91*</td>
</tr>
<tr>
<td>VO(_{2})peak (l min(^{-1}))</td>
<td>1.96 ± 0.33</td>
<td>1.91 ± 0.32</td>
<td>2.08 ± 0.29*</td>
<td>2.21 ± 0.31*</td>
</tr>
<tr>
<td>VO(_{2})peak kg(^{-1}) (ml kg(^{-1}) min(^{-1}))</td>
<td>47.02 ± 8.34</td>
<td>50.05 ± 6.20</td>
<td>40.50 ± 5.72*</td>
<td>32.38 ± 4.30*</td>
</tr>
<tr>
<td>Tanner stage (1/2/3/4/5)</td>
<td>2.0 ± 0.652/</td>
<td>1.9 ± 0.746/</td>
<td>2.2 ± 0.64/</td>
<td>2.1 ± 0.52/</td>
</tr>
<tr>
<td></td>
<td>154/40/2/0</td>
<td>115/27/2/0</td>
<td>21/9/0/0</td>
<td>18/4/0/0</td>
</tr>
</tbody>
</table>

BMI, body mass index.
*Significantly different from normal group; P<0.05.
#Significantly different from overweight group; P<0.05.

Partial correlations were age and Tanner stage was eliminated between leptin and VO\(_{2}\)peak are presented in Table 2. It is interesting to note that the absolute peak O\(_2\) consumption (l min\(^{-1}\)) correlated significantly with leptin only in total group. In different BMI subgroups, the relationship was no longer significant (P>0.05). Contrary, relative VO\(_{2}\)peak (ml min\(^{-1}\) kg\(^{-1}\)) correlated highly with leptin. The negative relationships were the highest in the total group (Table 2, r = 0.674). In all subgroups, this relationship was significant too (P<0.05).

In Table 3, the results of the regression analysis are presented. The relationship between leptin and VO\(_{2}\)peak (both l min\(^{-1}\) and ml min\(^{-1}\) kg\(^{-1}\)) was very high only in the total group (n = 248; 53.0%, R\(^2\) × 100, Table 3) the group consists boys with different BMI. In normal weight, overweight and obese group, only VO\(_{2}\)peak has important relationship with leptin (7-3%, 35-8% and 24-2%, respectively, R\(^2\) × 100).

Table 2 Partial correlations (controlling for age and Tanner stage) between leptin and peak O\(_2\) consumption in boys.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total group (n = 248)</th>
<th>Normal BMI group (n = 190)</th>
<th>Overweight (n = 34)</th>
<th>Obese (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO(_{2})peak (l min(^{-1}))</td>
<td>0.196**</td>
<td>-0.017</td>
<td>-0.155</td>
<td>-0.144</td>
</tr>
<tr>
<td>VO(_{2})peak kg(^{-1}) (ml kg(^{-1}) min(^{-1}))</td>
<td>-0.674***</td>
<td>-0.247**</td>
<td>-0.464**</td>
<td>-0.468*</td>
</tr>
</tbody>
</table>

BMI, body mass index.
P<0.05.
**P<0.01.
***P<0.001.

Table 3 Regression analysis with VO\(_{2}\)peak (l min\(^{-1}\)) and VO\(_{2}\)peak kg\(^{-1}\) (ml kg\(^{-1}\) min\(^{-1}\)) as independent variables and leptin as the dependent variable after controlling for age and pubertal status.

<table>
<thead>
<tr>
<th>Model</th>
<th>R(^2) × 100</th>
<th>(\beta)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total group (n = 248)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_{2})peak (l min(^{-1}))</td>
<td>53.0</td>
<td>0.314</td>
<td><0.001</td>
</tr>
<tr>
<td>VO(_{2})peak kg(^{-1}) (ml kg(^{-1}) min(^{-1}))</td>
<td>-0.705</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Normal BMI group (n = 190)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_{2})peak (ml kg(^{-1}) min(^{-1}))</td>
<td>7.3</td>
<td>-0.247</td>
<td>0.001</td>
</tr>
<tr>
<td>Overweight (n = 34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_{2})peak (ml kg(^{-1}) min(^{-1}))</td>
<td>35.8</td>
<td>-0.422</td>
<td>0.007</td>
</tr>
<tr>
<td>Obese (n = 24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_{2})peak (ml kg(^{-1}) min(^{-1}))</td>
<td>24.2</td>
<td>-0.487</td>
<td>0.028</td>
</tr>
</tbody>
</table>

BMI, body mass index.

Discussion

Our results indicate that leptin was significantly related to relative VO\(_{2}\)peak (ml min\(^{-1}\) kg\(^{-1}\)) in all groups. The negative relationships in obese groups were higher than in normal BMI group. However, the relationships were strongest in total group (53.0%, R\(^2\) × 100). The relationship with peak O\(_2\) consumption (l min\(^{-1}\)) was not significant, except in total group.

The mean values of VO\(_{2}\)peak kg\(^{-1}\) were relatively high in the subjects of the current study. For example, in our total group, the mean value was higher than recommended cut-offs (in 8 to 11-year-old boys 43.6 ml min\(^{-1}\) kg\(^{-1}\)) by Adegbuyoye (2011) and 47.02 ± 8.34 ml min\(^{-1}\) kg\(^{-1}\) (Table 1). Our mean results are higher in obese group compared with slightly higher BMI (32.9 ± 4.8 kg m\(^{-2}\)) obese children by Andreacci et al. (2005). On the other side, cardiorespiratory fitness is regarded as important marker of boys health, because its effect on association with obesity (Ortega, 2008). One of the reasons of relatively high VO\(_{2}\)peak kg\(^{-1}\) is the fact that our boys were selected (healthy, some of them taking part on the sport club activities).
The mean leptin levels in our study were very different (Table 1) between groups. This is typical in other studies too. There are a very few studies about the relationships between leptin and energy expenditure. In animal models, injection of leptin in mice resulted in increases in O$_2$ consumption (Pelley and mounter et al., 1995). Contrary, Nagy et al. (1997) data do not support the hypothesis that leptin concentration (independent of fat mass) is related to measure of energy expenditure in children (Nagy et al., 1997). Finally, in boys, the high rates of fat utilization decline during maturation (Stephens et al., 2006). Very few studies have investigated the relation of leptin in peak O$_2$ consumption. In our study, there were highly significant relationships between leptin and VO$_{2\text{peak}}$ kg$^{-1}$ in all measured groups (Table 2). Only one study by Roemmich et al. (1998) confirmed these results in prepubescent boys and girls. Recently, in two studies indicated that indirectly measured VO$_{2\text{max}}$ (20 m shuttle run) were independently and jointly associated with lower concentrations in leptin in adolescence (Jiménez-Pavón et al., 2012; Martínez-Gomez et al., 2012). One explanation is that, for example, lean boys had a low leptin concentration. On the other side, lean boys had a relatively high VO$_{2\text{peak}}$ kg$^{-1}$ too. Absolute VO$_{2\text{peak}}$ (I min$^{-1}$) and VO$_{2\text{peak}}$ kg$^{-1}$ showed a significant correlation with leptin, we can explain with the fact that leptin increases total energy expenditure.

One of the limitations of our study is that we have not measured more completely the participant physical activity (we asked only the participation in physical education classes) and subjects dietary intake. It will be interesting to select the boys by groups using different leptin values, not differences in BMI. Finally, it will be more correct to select boys to the different groups using body fat mass.

We can conclude that leptin first of all correlated negatively with relative peak O$_2$ consumption. Absolute VO$_{2\text{peak}}$ correlated with leptin only in total group.

Acknowledgement

This study was supported by Estonian Ministry of Education Grant (TKKSP 0489).

Conflict of interest

The authors have no conflicts of interest.

References

Bishop CM. The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc Biol Sci (1999); 266: 2275–2281.

Hosieck PA, McMurray RG, Cooper DM. The relationships between leptin and measures of fitness and fatness are dependent upon obesity status in youth. Pediatr Exerc Sci (2010); 22: 195–204.

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUTHOR: ‘HR’ has been changed to heart rate. please check.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AUTHOR: please define ‘LSD’.</td>
<td></td>
</tr>
</tbody>
</table>
Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We’ve picked out some of these tools below:

1. **Replace (Ins) Tool** – for replacing text.
 - Strikethrough a line through text and opens up a text box where replacement text can be entered.
 - **How to use it**
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. **Strikethrough (Del) Tool** – for deleting text.
 - Strikethrough a red line through text that is to be deleted.
 - **How to use it**
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. **Add note to text Tool** – for highlighting a section to be changed to bold or italic.
 - Highlights text in yellow and opens up a text box where comments can be entered.
 - **How to use it**
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. **Add sticky note Tool** – for making notes at specific points in the text.
 - Marks a point in the proof where a comment needs to be highlighted.
 - **How to use it**
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
5. Attach File Tool – for inserting large amounts of text or replacement figures.

How to use it
- Click on the Attach File icon in the Annotations section.
- Click on the proof to where you’d like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

6. Add stamp Tool – for approving a proof if no corrections are required.

How to use it
- Click on the Add stamp icon in the Annotations section.
- Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears).
- Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. Drawing Markups Tools – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

How to use it
- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double-click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: