Example of Autonomous Monitoring Device Powered by Traffic Participants

Alexander Suzdalenko1), Andrew Stepanov2), Ilya Galkin3)

Riga Technical University, Faculty of Power and Electrical engineering, Institute of Industrial Electronics and Electrical Engineering, Kronvalda boulevard 1-324, LV-1010 Riga, Latvia, www.edtv.rtu.lv
1) tel.: +371 67089918, e-mail: Aleksandr.Suzdalenko@RTU.lv ,
2) tel.: +371 67089918, e-mail: Andrejs.Steanovs@RTU.lv
3) tel.: +371 67089918, e-mail: gia@avene.eef.rtu.lv

\textbf{ABSTRACT}

In this article the hypothesis is drawn, that the remote monitoring system can be powered from the wind gusts created by moving objects. For this reason vertical shaft wind turbine and battery has been utilized to create autonomous monitoring system. The system has been evaluated during one month of field test.

\textbf{Keywords:} Autonomous monitoring system, traffic security, GSM/GPRS module

\section{1 INTRODUCTION}

Safety of any transportation system is getting of high importance with the rise of intensity, speed and number of participants. Thus, various systems and technologies are used to manage the traffic problems in remote areas, such as sensors, remote terminal units, data transferring systems etc., to eliminate possibility of accidents caused by human factor 1[1][2].

Any monitoring system consists of network of sensors, which acquires data of the controlled object. In some cases data acquisition system has to be located in areas where utility grid is unavailable. That is why the autonomous power supply is more preferable for sensor devices. For this reason some renewable energy source should be utilized for the power supply of the system.

As the monitoring system has to be located closely to controlled object, it is more preferable to harvest the energy available at the place of data acquisition. As the traffic participants are generally moving objects, the air shifts are caused when objects participate in the traffic. Thus, it could be possible to generate energy from the wind gusts caused by participants of the traffic system, meaning to use the traffic system as the energy source. As the result, the wind generator could be utilized as the primary energy source for the sensor device.

\section{2 SYSTEM REQUIREMENTS}

As the participants of the traffic system cause turbulent air movements, it is necessary to have wind generator, which harvests energy from air movements of any directions. For this reason vertical axe wind generator is utilized to meet this requirement.

Additional energy storage element should be used to provide continuous operation, during periods, when primary energy source is unavailable for some reason. It is proposed that the system could supply small loads (<1 W) during 24 h. In this case total amount of consumed energy is:

\[E_{24h} = P \cdot T_{day} = 1 \cdot 3600 \cdot 24 = 86400 \, J \] \hspace{1cm} (1)

The appropriate wind generator is chosen with the following two formulae:

\[P_v = 0.5 \cdot \rho \cdot A \cdot v^3 \] \hspace{1cm} (2)

\[P_e = P_v \cdot \eta_w \cdot \eta_g \] \hspace{1cm} (3)

where \(P_v \) is power of wind turbine [W], \(\rho \) is density of the air (1.225 kg/m\(^3\)), \(A \) – area of turbine’s rotor [m\(^2\)], \(v \) – wind velocity [m/s], \(P_e \) - power of generator [W], \(\eta_w \) - turbine’s efficiency, \(\eta_g \) – generator’s efficiency.

Assuming that the speed of wind gust is the same as the speed of moving object, measuring it in 1 m distance, then if object’s speed is about 60-90 km/h (16-25 m/s), it is possible to calculate the available power for wind turbine with 1 m\(^2\) rotor area:

\[P_v = 0.5 \cdot 1.225 \cdot 1 \cdot 20^3 \cdot 0.05 \cdot 0.5 = 122.5 \, W \] \hspace{1cm} (4)

The amount of energy is also related with the traffic intensity and type of transport. The following calculation is done for railroad, which intensity (\(\lambda \) [units/h]) preliminary assumed as 3 objects in hour, which passes the wind turbine during 50-60 seconds (\(\tau \) [s]), \(\eta_{st} \) - storage element efficiency. So that the required power (\(P_{el} \) [W]) of wind generator described below:

\[P_{el} = \frac{E_{24h}}{\eta_{st} \cdot \lambda \cdot \tau \cdot T_{day}} = \frac{86400}{0.8 \cdot 3 \cdot 60 \cdot 24} = 25 \, W \] \hspace{1cm} (5)

Now it is possible to calculate the required rotor area of wind turbine:

\[A_t = \frac{P_{el}}{P_v} = 0.2 \, m^2 \] \hspace{1cm} (6)

The electronic system that implements the monitoring functions has to be designed meeting high efficiency requirements, which should effectively utilize each Joule of harvested energy.
3 PRELIMINARY MEASUREMENTS

In order to analyze the potential of proposed autonomous energy system in certain places, the preliminary wind velocity measurements were conducted at different places – railroad and autoroute.

Fig. 1 Wind velocity pattern of moving freight train

Fig. 2. Wind velocity pattern of moving electrical train.

Fig. 3 Wind velocity pattern of moving freight trucks.

Energy analysis of acquired wind velocity data is presented below.

Fig. 4. Potential of energy generation from freight train wind pattern.

Fig. 5. Potential of energy generation from freight trucks wind pattern.

Summarizing the diagrams presented above (Fig. 1. to Fig. 5.), the most advantageous conditions for the proposed system are available on the railroad, where mostly freight trains are passing by.

4 DEVELOPMENT OF THE MONITORING SYSTEM

Development of an efficient charging device with maximum power point tracking (MPPT) algorithm, which allows harvesting as much energy from wind generator as possible, is one of the main functions in such application, because it affects the period of autonomous operation of the remote system. Another task is to develop energy efficient monitoring equipment, which can also prolong the autonomous operation.

The charger device is developed specially for low revolution wind generator application with the buck topology converter driven by microcontroller MSP430F2274.

Monitoring equipment consists of microcontroller, which monitors wind velocity and saves accumulated data into micro SD flash card. It also contains necessary elements for connection of GSM modem through RS-232 interface.

The microcontroller’s algorithm was chosen accordingly to previous researches provided in [3].

Tab. 1 Parameters of autonomous monitoring system

<table>
<thead>
<tr>
<th>Parameters of autonomous monitoring system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal speed velocity</td>
<td>10 – 15 m/s</td>
</tr>
<tr>
<td>Minimal speed velocity</td>
<td>3 m/s</td>
</tr>
<tr>
<td>Maximal speed velocity</td>
<td>30 m/s</td>
</tr>
<tr>
<td>Monitoring system nominal power</td>
<td>1 W</td>
</tr>
<tr>
<td>Generators nominal power</td>
<td>22 W</td>
</tr>
<tr>
<td>Battery’s capacity</td>
<td>24 Wh</td>
</tr>
<tr>
<td>IP class</td>
<td>IP 64</td>
</tr>
<tr>
<td>Data transfer</td>
<td>GSM</td>
</tr>
<tr>
<td>Data storage</td>
<td><4 GB, micro SD card</td>
</tr>
<tr>
<td>EMC</td>
<td>LVS EN 50419:2005</td>
</tr>
<tr>
<td>Control box dimensions</td>
<td>300x300x150 mm</td>
</tr>
<tr>
<td>Wind turbine dimensions</td>
<td>650x300 mm</td>
</tr>
</tbody>
</table>
5 FIELD TEST

After receiving the permission to install proposed autonomous monitoring system in a certain place, it was noticed that the intensity of the train traffic and their speed at that place was not the same as the one which had been assumed in the preliminary calculations. Nevertheless, it was possible to decrease the amount of consumed power of monitoring system by changing the algorithm of the system operation – the GSM modem (which is powered by 9 V and consumes 70-200 mA) was powered only during periods, when messages were sent to the supervisory center with Short Message Service (SMS). The result was drop of power consumption down to 0.1 W.

On the picture below (see Fig. 6.) the remote autonomous monitoring system is shown, with 4 m long mast, anemometer on the top, vertical axe wind turbine and control box in the middle.

The acquired data from the anemometer is presented on the diagram below (see Fig. 8.). Each measurement was taken as an average value of wind velocity during a period of 2 minutes. As it can be noticed, generally the average speed was not high, that was not enough to power the system continuously, but during short periods of gusts it was possible to charge the battery and maintain more or less constant voltage on it. Daily graphic (see Fig. 9) provides more detailed view of the wind velocity change.

Figure 7 shows the change of the battery voltage during field test that approves the autonomous operation with more or less constant voltage on the battery.

![Fig. 6. Proposed autonomous metering system.](image)

![Fig. 7. Battery voltage change during the field test.](image)

![Fig. 8. Acquired wind velocity data during the field test.](image)

![Fig. 9. Wind velocity data during one day.](image)
6 CONCLUSIONS
The safety of any type of transportation is getting of high importance, which has to be monitored and controlled remotely.

The proposed autonomous monitoring system harvests energy from the air gusts caused by moving objects. Depending on the type of the transport, its wind gust pattern differs noticeably, thus making suggestion of more or less successful operation in some certain case, for example, freight train causes preferable air gusts (with high wind velocity and period) because of train’s non-aerodynamic shape.

The autonomous system has been tested during one month in a certain place, which did not match the preliminary calculations, that is why the consumed power of the proposed monitoring system had been cut down.

The results of the field test revealed the solvency of the drawn hypothesis and can be implemented also in different locations.

7 FUTURE WORK
For the future work it is planned to make field tests with nominal power of monitoring system, as well as to evaluate this hypothesis in different locations like metropolitan, tunnels and high speed roads.

ACKNOWLEDGEMENTS
This research was supported by ERAF project “Intellectual hybrid uninterruptible power systems and component development and research to improve energy efficiency” (2010/0225/2DP/2.1.1.1.0/10/APIA/VIAA/160).

REFERENCES