Trace elements indicating humid climatic events in the Ordovician–early Silurian

Enli Kiipli, Tarmo Kiipli *, Toivo Kallaste, Siim Pajusaar
Department of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

A R T I C L E I N F O

Article history:
Received 27 January 2017
Received in revised form 23 May 2017
Accepted 29 May 2017
Editorial handling - Carita Augustsson

Keywords:
Ordovician
Silurian
Palaeoclimate
Baltica
Clay
Rb
Zr
Nb
Ti

A B S T R A C T

The chemical composition of the clay fraction separated from the carbonate rock of the north-eastern Baltoscandian Basin was analysed and interpreted. Increased contents of Rb, Zr, Nb, Ti and their Al₂O₃-normalised ratios were detected at several stratigraphical levels in the geological sections of the Middle Ordovician–Upper Llandovery. In the weathering areas, Rb, Zr, Nb, Ti and Al are sensitive to moist conditions in the clay-forming process. In the sedimentary basin, the contents of these elements in clay are preserved and allow to infer past climates. Humid events occurred in the Dapingian, Sandbian, early Katian and Hirnantian (Ordovician) and in the Middle and Late Llandovery (Silurian). Juxtaposition with the sea-level curve shows correlation of five humid climate intervals with eustatic transgressions, suggesting global causes for these climatic changes. The warm and humid events, lasting one to two million years, occurred as climaxes between ice ages. An exceptional humid event within the Hirnantian glacial time occurs during mid-Hirnantian transgression, i.e. at a time of relative warming, as well.

© 2017 Elsevier GmbH. All rights reserved.

1. Introduction

The cyclic alternation of sediments in geological sections has inspired geologists to find the reasons and create different models to illustrate the phenomenon. Oscillation of the sea level generating transgressions and regressions explains the variation of layers of either different grain size or lithological–mineralogical composition (Johnson, 2006; Haq and Schutter, 2008). The alternation of limestone–marlstone involves climatic reasons; the model by Jeppsson (1990) and (Aldridge et al., 1993) describes repeated arid–humid conditions and related changes in oxic–anoxic state of the ocean. After intensive studies of isopes, particularly of δ¹³C and δ¹⁸O, a hypothesis was proposed that a number of ice ages had occurred in the Palaeozoic (Azmy et al., 1998; Saltzman and Young, 2005; Saltzman, 2005; Kaljo et al., 2003). In the present study we track the climatic changes recorded in the clay fraction and concentrate on the relationship between humid climatic events and high-sea-levels. We focus on the distribution of Rb, Zr, Nb, Ti and Al in the Dapingian–Llandovery geological sections, covering the time from 470 to 435 Ma. The sedimentary rock of the East Baltoscandian Basin, which has received the terrigenous clay from the Fennoscandian Shield, is the source material for investigation.

2. Geological background

The Fennoscandian Shield is situated adjacent to the NE Baltic–scandian Basin (Fig. 1). Precambrian rocks of the shield represent the average composition of the continental Earth’s crust. The parent rock for chemical weathering consists of metamorphosed schists and gneisses, granitic plutons and smaller mafic bodies (Simonen et al., 1997). The Fennoscandian Shield is flat and the sediment reaching the basin fine-grained, consisting of clay and silt. Limestones and marlstones are the lithological types of the shallow shelf, while in the deep shelf more clayey sediments occur. Illite is the main clay mineral in the shallow shelf (Pölma, 1982). Possible precursor minerals to illite, such as vermiculite, have not been detected. During the Ordovician and Silurian, the Baltic Craton drifted from temperate latitudes towards the Equator (Torsvik et al., 1996; Cocks and Torsvik, 2005). Several glaciations at the South Pole took place at that time. Positive excursions of δ¹³C and great gaps in sediments of the shallow shelf reflect the glaciations and sea-level drops (Kiipli et al., 2010; Loi et al., 2010). The time between ice ages can be considered as a warmer period with a higher sea level.

3. Geochemical background

3.1. Formation of Rb, Ti, Nb and Zr in clays

During chemical weathering and the following erosion on large areas the source material is homogenised and achieves the aver-
age chemical composition corresponding to the climate of the particular time. Beside landscape and composition of the parent rock, the temperature and humidity are the most important factors affecting clay composition (Van de Kamp, 2010). In the sedimentary basin, terrigenous clay minerals preserve many signatures obtained during chemical weathering, among others, Al, Rb, Ti, Nb and Zr. The contents of Rb, Ti, Nb, Zr and Al in clay depend on humidity and temperature conditions, as can be inferred from laboratory experiments and recent weathering profiles. Akul’shina (1976), after investigating different geological sections, including the formations with coal interbeds pointing to humid climate, and evaporates assigned to arid climate, elaborated an empirical relationship between $\text{Al}_2\text{O}_3/\text{TiO}_2$ of clay and climate. The $\text{Al}_2\text{O}_3/\text{TiO}_2$ ratio below 20 shows humid climate, the ratio over 30–arid, and the values between 20 and 30 refer to semi-humid and semi-arid climates. When using the reciprocal ratio, $\text{TiO}_2/\text{Al}_2\text{O}_3$, as done in the present study, the value >0.05 points to humid conditions. The increase in the $\text{TiO}_2/\text{Al}_2\text{O}_3$ ratio of clay at wet climate is explained by higher removal rates of Al from the parent rock at the first stages of chemical weathering. The proportion of Ti increases and Ti is readily incorporated into the new-formed clay, into a tetrahedrally coordinated position (Cornu et al., 1999). Nb and Zr can have similar valence state and an ion radius close to that of Ti, thereby they behave similarly in the clay-forming process. Though Al, Ti, Zr and Nb are generally immobile (Nesbitt et al., 1980; Kiipli et al., 2017), differences in mobility occur; aluminium goes into solution first and Zr is the least mobile of the four (Hodson, 2002). In diagenesis, the mobility of Ti is possible. The anatase form in the clay fraction is very likely related to muscovite or illite and forms in post-depositional processes. Allé (2004) describes the in situ formation of TiO$_2$ minerals in a non-metamorphised Precambrian sedimentary clay. The TiO$_2$ minerals have been found in association with the faces (001) of illite flakes or in the pores between flakes, suggesting that Ti originates from clay minerals (Allé, 2004). The co-occurrence of Rb with Ti, Nb and Zr is somewhat unexpected, as Rb$^+$ is a mobile ion moving easily into solution with Na$^+$ at the first stages of chemical weathering. Previous studies of Rb, mostly linked to Cs and radiocaesium as radioactive wastes, have shown that Rb and Cs have similarities in sorption into illitic clay (Brouwer et al., 1983). High concentrations of Rb have been recorded in soils of the Savannah River Site, North America. These soils are products of substantial weathering of coastal plain sediments at warm climate and relatively high rainfalls. Elevated Rb contents in these soils have been assigned to hydroxy-interlayered vermiculite (Wampler et al., 2012), a precursor mineral to illite. In Toorongo, east-central Victoria, Australia, the most leached part of the weathering profile also reveals increased Rb contents in residues inherited from the alteration biotite → vermiculite → illite (Nesbitt et al., 1980). Rubidium dissolves readily from the parent rock when the climate turns wet, and adsorbs into the newly-formed clay mineral. Weathered mica particles have suitable sites for Rb$^+$ fixation in the expanded interlayers of the frayed edges (Zachara et al., 2002; Wampler et al., 2012). The fixation capacity of the frayed edges is regulated by hydroxy-Al polymers (Maes et al., 1999; Meunier, 2007) whose intrusion into crystal structure is sensitive to humidity as well (Nakao et al., 2009a, 2009b).

4. Materials
To ensure that we study comparable material in tracking the climate through the long geological time, the material was collected from Estonian cores of the shallow shelf. Since the deeper part of the Baltoscandian Basin has received sediments from weathering areas of other climate regimes and of different mineral composi-
Fig. 2. Sea-level stands vs. humid events. The whole-rock SiO$_2$/Al$_2$O$_3$ 3-point average is a proxy for sea level fluctuations in the deep (the Aizpute core) and shallower shelves (the Laeva core). The sea-level curve by Haq and Shutter (2008) is given. Al$_2$O$_3$-normalised TiO$_2$, Rb, Zr and Nb of the clay fraction of the composite core section show elevated values at certain stratigraphical levels, the levels of humid events (HE) [grey ribbons]. Correlation of the Ordovician global and regional stages and graptolite zones after Nõlvak et al. (2006); Silurian correlations after Nestor (1997) and Kiipli et al. (2006).

Fig. 3. The Rapla core. (A) Lithology and Al$_2$O$_3$-normalised TiO$_2$, Nb, Rb and Zr of the clay fraction of the lower Katian HE. Note the change in the vertical scale at the Oandu/Rakvere boundary. (B) development of temperature and pCO$_2$ inferred from the elements and lithology.
tion (Kiipli et al., 2008, 2009), this part was omitted. For tracking the humidity we used only the clay fraction, as variations in the composition and quantity of coarser fractions could have brought about uncertainty (Kiipli et al., 2012). The bulk of samples came from the Laeva-13 (hereafter simply the Laeva) core, which is situated at the upper boundary of the transitional zone between the shallow and the deep shelf (Fig. 1). The Laeva section is rather complete, though some stratigraphic intervals are condensed or absent. To complement the lacking parts, the clays from the Porkuni quarry and Kirikuküla core for the Hirnantian, and Paatsalu core for the Upper Llandovery, were used (Fig. 2). In addition, a trench in the Peetri Hillock (Supplementary Table 1) and the Rapla core were investigated for the clay composition of the Sandbian and lower Katian (Fig. 3). The whole-rock samples of the Aizpute-41 (hereafter simply the Aizpute) and Laeva cores were analysed for SiO₂/Al₂O₃ ratio.

5. Methods

The clay fraction <1 μm was separated from the carbonate rock devoid of organic carbon. The carbonate samples were then treated with 1N HCl considering that for 100 g calcite 2 L of acidic solution was needed. The insoluble residue, consisting of clay and silt with minor sand, was settled for 24 h in a 10-cm-thick column of 0.1% Na-pyrophosphate solution. The unsettled part, the clay fraction <1 μm, was centrifuged, washed and dried. Thereafter, the pressed clay pellets were subjected to the XRF analysis. The concentrations of elements and crystal water were calculated using the standard “MultiRes” and “Eval 2” software programmes from Bruker AXS. The relative standard deviation of major components was 0.2–0.9% (calculated from repeated measurements of the in-house reference material Es-1). The detection limit for the main elements heavier than P was 0.01%, for lighter elements—0.1%. The precision of Rb was ±4 ppm, of Nb ±1.5 ppm and of Zr ±6 ppm (two standard deviations). The normalisation by Al₂O₃ was used to exclude any influence of changes in contents of other main elements. The mineral composition of the clay fraction was analysed in more than 20 samples from different cores using the X-ray diffractometry (XRD). The measurements were carried out in the Bruker D8 Advance diffractometer using Fe-filtered Co radiation and Lynxeye detector. The whole-rock composition, used for calculating the SiO₂/Al₂O₃ ratio was analysed from pressed powder pellets in the Bruker AXS S-4 spectrometer. The 3-point averages of SiO₂/Al₂O₃ of the Aizpute core from the deep and Laeva core from the shallower shelf were used to describe the sea-level fluctuations (Fig. 2). Grain size of the siliciclastic part of 32 Laeva samples was measured using the sedigraph Horiba LA-950. The mean grain size was automatically calculated according to the formula MCS = Σ q x 100, where q was the percentage of a particular grain fraction and e the diameter of grains (in μm) in this fraction. The mean grain size vs. SiO₂/Al₂O₃ ratio was used to assert the whole-rock SiO₂/Al₂O₃ as a proxy for sea-level stand.

6. Results

6.1. Minerals of the clay fraction of the sedimentary rock

Investigation of the clay fraction detected illite as the main mineral that also included minor muscovite polytype 2 M₁, Terrigenous quartz and orthoclase, together around 10%, were also present. The content of chlorite varied from 0.5 to 6%, being higher in the Silurian clay. In situ formed corrensite, up to 30%, occurred in the upper Pirgu (uppermost Katian) and Porkuni (Hirnantian) stages, mainly in cores between the shallow and the deep shelf. In the lower Haljala Stage (lower Katian), the authigenic chert originating from the silica sponge Pyritonema (Männil, 1966) was present in both deep and shallow shelves, in the clay as well as in coarser fractions. Fine dispersed pyrite was predominant in the grey-coloured and hematite-goethite in the red beds. The clay of the Rakvere Stage of the Rapla core contained a few percent of authigenic K-sandine and 0.5% of anatase.

6.2. Intervals of the increased Al-normalised Rb, Ti, Zr and Nb—the HEs

Geological sections in Estonia show elevated Al₂O₃-normalised values of Rb, Zr, Nb and TiO₂ of the clay fraction in four Ordovician and two Silurian stages. As Rb, Zr, Nb and Ti are sensitive to moist conditions, we call the levels of their increased contents in geological sections, the levels of humid events (HEs). The oldest level of a HE is in the Volklov Stage, Dapingian, Middle Ordovician (Fig. 2). The interval reveals high TiO₂/Al₂O₃ and Nb/Al₂O₃, but low Zr/Al₂O₃ and Rb/Al₂O₃ ratios. The following, Sandbian interval starts with a high Rb/Al₂O₃ ratio in the middle of the Kukruse Stage and ends with peaks of TiO₂/Al₂O₃, Zr/Al₂O₃ and Nb/Al₂O₃ in the upper Kukruse. The Peetri Hillock near Tallinn (capital city of Estonia) reveals similarly high values in the correlative section (Supplementary Table 1). The time-span between the first and second HE is approximately 9 Ma. The third HE starts about 4–5 Ma later in the early Katian, comprising the Oandu, Rakvere and Nabala regional stages (Fig. 2). The Rakvere Stage exhibits the highest absolute and Al₂O₃-normalised Rb values. The content of Rb in the Rapla core reaches 328 ppm, with the mean around 300 ppm within the HE, and 220–250 ppm as the background value outside the HE (Fig. 3). The Hirnantian HE shows high Al₂O₃-normalised values of Zr, Nb and TiO₂, but not of Rb (Fig. 2). The HE of the Raikküla Stage (Middle Llandovery, Silurian) follows the post-glacial Early Llandovery with fluctuating element-to-Al ratios. A gap in sedimentation separates the Middle Llandovery event from the overlying Late Llandovery. In the Paatsalu core (Fig. 2), the HE of the Late Llandovery, corresponding to the Rumba Formation of the Adavere Stage, reveals the highest Zr and Nb contents, 413 ppm and 29 ppm, correspondingly (Supplementary Table 1). Very often the appearance of element maxima within a HE is asynchronous—the Rb/Al₂O₃ peak occurs first, other elements following later on (Fig. 2–3).

7. Discussion

7.1. The whole-rock SiO₂/Al₂O₃ curve as a proxy for sea-level stand

The whole-rock SiO₂/Al₂O₃ and mean grain size of the siliciclastic component reveal a positive correlation (R² = 0.44) in the Laeva core, enabling the use of SiO₂/Al₂O₃ as proxy for the grain size (Fig. 4) and sea level. The mean grain size is larger when the coastal denudation area is closer to the core site, pointing to regression, while smaller grain size corresponds to transgression. The Laeva core shows higher SiO₂/Al₂O₃ peaks than the more clayey Aizpute section (Fig. 2), as in the cores of shallower facies the addition of coarser fractions with abundant quartz raises the SiO₂/Al₂O₃ value at regressions. The mid-Sandbian authigenic chert masks the terrigenous SiO₂/Al₂O₃ ratio. To eliminate the influence of chert and to correct the sea-level curve, the distribution of whole-rock TiO₂/Al₂O₃ was used. Ti as a terrigenous component reveals no peak in the Haljala Stage pointing to the absence of a great regression (Fig. 2). The juxtaposition of Al₂O₃-normalised elements of clay and SiO₂/Al₂O₃ ratio of the whole-rock shows correlation between most HEs and maximum sea-level stands (Fig. 2). Comparison of the regional sea-level curve (represented by SiO₂/Al₂O₃
ratio) with the global sea-level curve by Haq and Schutter (2008) (Fig. 2) reveals a rather good correlation. Some disagreements may arise from regional differences or correlation problems. A review of other Ordovician and Silurian sea-level curves by several authors is given by Munnecke et al. (2010).

7.2. Eustatic transgressions and humid events

The HEs reveal short-term but prominent changes in climate and chemical weathering lasting approximately one to two million years. In the Baltoscandian Basin, the levels of the increased Ti, Rb, Zr and Nb, i.e. the HEs, correspond to the short-time maxima within longer sea-level highstands, according to both regional and global curves (Fig. 2). The sea-level rise can be either eustatic or tectonic-related regional. If the HE corresponds to eustatic transgression, the global cause for the HE formation is very likely. The melting of ice caps at the South Pole, due to increase in temperature, would induce eustatic transgressions. The rise in temperature would enhance evaporation and rainfalls, making the climate humid (Rind, 2000). The increased contents of Ti, Rb, Zr and Nb in illite are well expressed in the medium latitudes. In the equatorial zone, the result might be different. Minerals forming at very humid conditions, such as kaolinite, have no suitable sites in crystal lattice to incorporate elements, e.g. Rb.

The Volkhovian (Dapingian) sea-level maximum is a culmination of the transgression proceeding since the Floian, as recorded in the Baltoscandia (Männil, 1966 figs. 50–52), or since the Early Cambrian on the global scale (Haq and Schutter, 2008). The maximum sea stand, expressed by the lowest SiO$_2$/Al$_2$O$_3$ values in the sea-depth curve of the Aizpute core, is correlative with a HE (Fig. 2). Further on, in the Darrwillian, the increase in δ^{18}O apatite shows cooling of the atmosphere and sea water (Trotter et al., 2008). The corresponding rise in SiO$_2$/Al$_2$O$_3$, seen in the Aizpute curve (Fig. 2), marks the Darrwillian regression and possible glaciation. The next, early Sandbian HE of the Kukurse Stage corresponds to the phase of the highest sea-level stand of the Palaeozoic (Haq and Schutter, 2008). The following Guttenbergian glaciation, correlative with the Diplacanthograptus caudatus (in USA), Dicranograptus clingani (in Baltica) or Climacograptus bicornis (in Argentine) graptolite zones (Bergström et al., 2009; Loydell, 2012; Sial et al., 2013), separates the Sandbian and Katian HEs. In the Laeva core, the Guttenbergian glaciation is expressed as a steep increase in SiO$_2$/Al$_2$O$_3$ values in the late Keila Stage (Fig. 2). On the SiO$_2$/Al$_2$O$_3$ curve of the Aizpute core, the glaciation is poorly followed due to a condensed interval or hiatus. The beginning of the Katian HE is contemporaneous with the post-Guttenbergian transgression of the Oandu Stage (middle clingani). In the Belarussian part of the Baltoscandian Basin, the Oandu strata cover the Cambrian sediments unconformably, pointing to a transgression (Ropot and Pushkin, 1987). In Estonia, the areal spread of the lower Oandu Stage is patched (Männil, 1966), probably indicating a developing sea-level rise after the Guttenbergian lowstand. The overlying Kalkvere Stage shows a high–sea stand, as wide areas in Estonia and adjacent Russia reveal similar cryptocrystalline limestone (Männil, 1966 Fig. 62). The following Nabala Stage ends with karst pointing to regression (Calner et al., 2010). Consequently, the Katian HE corresponds to the eustatic sea-level highstand after the end of Guttenbergian glaciation. The overlying Vormsi Stage, though being transgressive in Estonia, reveals no increased values of Ti, Rb, Zr and Nb (Fig. 3). The Hirnantian is a time of ice age and increased values of δ^{13}C and δ^{18}O in geological sections (Brenchley et al., 1994). In Nevada, two widespread unconformities—one at the beginning of the extraordinarius graptolite and raugordeau chitinozoan zones and the second somewhat later at the beginning of the hassi conodont zone—are recorded, representing glacial episodes. Carbonate deposition in shallow shelves is coeval with the interglacial between the unconformities (Bergström et al., 2014). In NE Spain, the sediments between gaps also indicate temporary warmings and transgressions within the Hirnantian (Subías et al., 2015). In the Baltoscandian Basin, regression and gaps reach the transitional zone and even the deep shelf (Ulst et al., 1982) (Fig. 2). The preserved calcareous and dolomitic sediments and small bioherms of the Porkuni Stage in Estonia point to modest transgressions and temporary warmings, similarly to the interglacial sediments of USA and Spain. High contents of Al$_2$O$_3$-normalised TiO$_2$, Zr and Nb, excluding Rb, occur in the clay fraction pointing to humidity in the Porkuni time (Fig. 2). As an alternative to the idea on temporary warming, the rainfalls could result from the equatorward shift of the polar front to the latitudes near 30\degreeS, inferred from the movement of cold-water faunas into lower latitudes (Vandenbroucke et al., 2010). All these facts are suggestive of oscillating climate in the Hirnantian.

In the early Silurian, sea-level rise prevailed (Fig. 2). The high sea stand was temporarily interrupted by regressions. A gap in Estonian sections, corresponding to the Stimulograptus sedgwickii graptolite zone of the upper Middle Llandovery, and the correlative positive carbon isotope excursion in Canada (Melchin and Holmden, 2006), could be indicative of a glaciation event. Two HEs occur in the Llandovery—the first in the Raikiku Stage of the Middle Llandovery and the second in the Rumba Formation of the Adavere Stage (Late Llandovery). The sedgwickii gap between them shows that the climate state could have changed rapidly from warm and humid to cold and back again. Since the latest Llandovery, the Fennoscandian Shield has been situated in arid latitudes. The clay minerals, though mainly illites (Küpli et al., 2016), reveal no increase in the contents of Ti, Rb, Zr and Nb, i.e. lack any indication of a HE. The climate of arid latitudes together with the peculiarities of the emerging Caledonides in the vicinity, probably, impeded the revelation of possible global humid events.

Jeppsson’s model (1990) on arid–humid climatic alternation, based on marble–limestone variation in Gotland initiated a hot debate in 1990s. According to Jeppsson (1990), humid climate in low latitudes and cold climate in high latitudes corresponds to marly sequences, while dry climate in low latitudes and warm climate in high latitudes are coeval with carbonate-rich sequences. Once isotope data was included, the δ^{18}O and δ^{13}C had various interpretations by different authors. The high isotope values paralleled with carbonate-rich units point to either increase in ocean water salinity and faster organic carbon burial rate (Bickert et al., 1997), or lower ocean water temperatures and higher primary productivity in ocean surface waters (Wenzel and Joachimski, 1996). The marlstones, considered as belonging to humid episodes by
7.3. Infringing the climate from lithology and trace elements

The succession of chemical elements and changes in lithology can indicate related developments of climate during a HE. Fig. 3 illustrates the lower Katian case on the basis of the Rapla core. The section reveals no elevated TiO₂, Nb, and Zr Al₂O₃-normalised values in clays of the Keila Stage before the Guttenbergian glaciation (Fig. 3A). The first peak of Rb/Al₂O₃ occurs in the Oandu Stage pointing to formation of warm and moist climate after the ice age, as the increase in temperature generated evaporation and rainfalls (Fig. 3B). The Oandu Stage consists of claystone and marlstone in the shallow shelf. The rise in pCO₂ growing in pace with the temperature caused low pH and poor carbonate formation. In the overlying Rakvere Stage, the TiO₂, Nb and Zr Al₂O₃-normalised values increase, indicating great humidity. Instead of former clayey sediments, pure cryptocrystalline limestone occurs. The pH increase of seawater, which favours limestone formation, is maintained by decline in CO₂, either global or local. In the latter case, the pH rise could be due to local increase in primary bioproduction utilizing CO₂ without changing the temperature. Though, no clear evidences for bioproduction rise have been found in the Rakvere Stage. Decrease in atmospheric pCO₂ presumes corresponding lowerings in temperature, which contradicts the high humidity of the Rakvere time. We propose that stabilisation or minor decrease in temperature and pCO₂ occurred (Fig. 3B). The temperature stayed high enough to generate evaporation and humidity, the end of rise in pCO₂ increased seawater pH favouring the rapid formation of limestone. In the following Nabala time, the small fluctuations of temperature and CO₂ recurred. At the end-Nabala time, the possible decline in temperature and evaporation led to decrease in element contents and cease of the HE.

8. Conclusion

Rb, Zr, Nb and Ti and their Al₂O₃-normalised values of the clay fraction reveal considerable increase at several stratigraphical levels in the Baltoscandian Basin. The mentioned elements are sensitive to humidity and incorporated into illitic clay in the process of chemical weathering in the adjacent land. Thus, in the marine sedimentary sections, the levels of increased contents of these elements are called ‘humid events’ (HE). HEs occurred in the Dapingian, Sandbian, Katian and Hirnantian (Ordovician) and in the Middle and Upper Llandovery (Silurian). Juxtaposition of HEs with the sea-level curve shows correlation of HEs with the highest eustatic sea stands, indicating warm ice-free times. Hirnantian humidity is an exception, occurring either due to the latitudinal shift of climate during glaciation, or warming and sea-level rise during the interglacial in the mid-Hirnantian. The development of climatic conditions within a HE can be inferred from the order of appearance of high values of the studied elements and comparison with coeval lithology. A HE often starts with an increase in Rb/Al₂O₃ pointing to humid and warm conditions, followed by rise in Zr, Nb and Ti contents emphasizing humidity.

In addition to the cold glaciation intervals established by previous researchers, several warm and humid short-stands occur as humid climaxes between ice ages, lasting one to two million years.

Acknowledgments

This study is financed by the Department of Geology at Tallinn University of Technology. The article is a contribution to the projects IGCP 652 and IGCP 653. We thank H. Pohl-Raidda and M.-L. Kiipli for the linguistic help. We are grateful to two anonymous reviewers. The rock samples come from the collection of the Department of Geology at Tallinn University of Technology.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.chemer.2017.05.002.

References

