Short communication

PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media

Kristel Jukk a, Nadeza Kongi a, Kaido Tammeveski a,⁎, Jose Solla-Gullón b, Juan M. Felib

a Institute of Chemistry, University of Tartu, Ravila 14, 50411 Tartu, Estonia
b Instituto de Electroquímica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain

A R T I C L E I N F O

Article history:
Received 17 March 2015
Received in revised form 31 March 2015
Accepted 1 April 2015
Available online 9 April 2015

Keywords:
PdPt alloy nanoparticles
Oxygen reduction
Electrocatalysis
Shape-controlled nanocubes
Bimetallic catalysts

A B S T R A C T

In this work, PdPt alloy nanocubes with different metal ratios were synthesised in the presence of polyvinylpyrroloidine (PVP). The surface morphology of the PdPt samples was characterised by transmission electron microscopy (TEM). TEM images showed that PdPt nanoparticles were cubic-shaped and the average size of the cubes was about 8–10 nm. Their electrocatalytic activity towards the oxygen reduction reaction (ORR) was studied in 0.5 M H2SO4 using the rotating disc electrode method. All the alloyed catalysts showed enhanced electrocatalytic activity for ORR as compared to the monometallic cubic Pd nanoparticles. Half-wave potential values for PdPt catalysts were comparable with that of Pt nanocubes. From the alloyed catalysts Pd36Pt64 exhibited the highest specific activity, which was only slightly lower than that of cubic Pt nanoparticles. The Koutecky–Levich analysis revealed that the reduction of oxygen proceeded via 4-electron pathway on all the electrocatalysts studied.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Platinum-based catalysts are the best electrocatalysts for oxygen reduction reaction (ORR) in fuel cells [1,2]. However, because of the high price and limited supply of Pt, numerous researches have focused on finding a way to reduce its amount in the catalysts. One way to decrease Pt loading is to replace it partially by other metals. However, the change in catalytic properties is not only decreases the amount of Pt, but also modifies the crystallographic and electronic structures of Pt, which can affect the binding energy between Pt and oxygen [3]. Palladium is a promising substitute due to the similar properties to Pt (same electronic and crystallographic structures). However, the enhancement of catalytic activity is highly dependent on the nanoparticle’s morphology and reported highest ORR activity with hollow nanocrystals [10]. Zheng and co-workers explored the electroreduction of oxygen on PtPd nanoflowers and stated that these catalysts exhibited highest electrocatalytic activity for ORR [11]. Lee et al. studied the reduction of O2 on Pt-coated Pd nanocubes in alkaline solution and concluded that the core–shell nanocubes showed 2.5 times higher specific activity than Pt nanoparticles [14].

To our knowledge, the literature about oxygen reduction on Pt-Pd alloy nanocubes is scarce. In this work, the reduction of oxygen on PdPt alloy nanocubes synthesised in the presence of PVP was investigated using a rotating disc electrode. Different Pd-to-Pt ratios were used and the electrocatalytic activity of PdPt catalysts for ORR was compared with that of cubic Pd and Pt nanoparticles.

2. Experimental

PdPt alloy nanocubes were synthesised using a similar methodology to that described elsewhere [16]. Briefly, 20 mM potassium tetrachloropalladate (>99.99%, Sigma-Aldrich), 20 mM potassium tetrachloroplatinum (>99.99%, Sigma-Aldrich), 75 mg of sodium iodide (>99.99%, Sigma-Aldrich) and 160 mg of poly(vinylpyrroloidine) (PVP, MW ≈ 55,000, Sigma-Aldrich) were mixed together with 10 mL N,N-dimethylformamide (Sigma-Aldrich) in a glass vial and the mixture was sonicated for 2 min. The resulting homogeneous mixture was capped, transferred to an oven and heated at 130 °C for 3 h before...
cooling down to room temperature. The colloidal products were collected by centrifugation and washed several times with an ethanol-acetone mixture and finally stored in ultrapure water. In order to synthesise PdPt alloy nanocubes with different composition, the amount of K₂PdCl₄ and K₂PtCl₄ was accordingly varied. The nominal PdPt alloy compositions were 34/66, 50/50 and 66/34. The surface morphology and composition of PdPt alloy nanocubes was characterised using a transmission electron microscope (JEOL, JEM-2010 working at 200 kV) equipped with an X-ray detector OXFORD INCA Energy TEM 100 for microanalysis (EDX). The TEM samples were prepared by placing an aliquot of diluted ethanol/acetone dispersions onto a Formvar-covered copper grid and allowing the solvent to evaporate in air. For comparison purposes, Pd and Pt nanocubes were also checked. Pd nanocubes were synthesised by CTAB method [17,18] and Pt nanocubes by microemulsion method [19]. The average particle size for Pd nanocubes was 20–25 nm and for Pt nanocubes 10 nm. Glassy carbon (GC) electrodes with geometric area (A) of 0.071 cm² were used in this work. For the rotating disk electrode (RDE) experiments an EDI101 rotator and a CTV101 speed control unit (Radiometer) were employed. The electrode rotation rate (w) was varied between 360 and 4600 rpm.

Electrochemical experiments were conducted in a three-electrode glass cell in 0.5 M H₂SO₄ solution (Suprapur, Merck) using an Autolab potentiostat/galvanostat PGSTAT30 (Eco Chemie B.V.). The electrolyte was saturated with O₂ (99.999%, AGA) or Ar (99.999%, AGA). A Pt wire was used as a counter electrode and all the potentials are referred to the reversible hydrogen electrode (RHE). Cyclic voltammetry (CV) experiments were performed in Ar-saturated solutions at a potential scan rate (ν) of 50 mV s⁻¹. CO adsorption-stripping was used as a final cleaning step of the catalyst surface. The electrode potential was held at 0.05 V and CO gas was introduced into the electrochemical cell. After 1 min of constant bubbling throughout the electrolyte, CO was replaced by Ar for 30 min, still at 0.05 V, to remove the dissolved CO from the solution. For CV and CO stripping experiments the current densities were calculated per real surface area of the catalysts. The charge corresponding to Hupd desorption was used for the calculation of the real area (Aᵣ) of the PdPt alloy, Pd and Pt cubes (Hupd(Pt) = 210 μC cm⁻² [20] and Hupd(Pd) = 212 μC cm⁻² [21]).

3. Results and discussion

3.1. TEM/EDX characterisation of PdPt catalysts

Representative TEM images of the PdPt nanocubes are shown in Fig. 1. In all cases, a preferential cubic particle shape is clearly identified. The average particle size was 8.6 ± 0.9, 9.4 ± 1.4 and 10.4 ± 1.2 nm corresponding to Pd₃₄Pt₆₆, Pd₅₀Pt₅₀ and Pd₆₆Pt₃₄ samples, respectively. The EDX analysis revealed that the atomic composition of the synthesised PdPt alloy nanocubes was in good agreement with the nominal ones and Pd:Pt ratios of 36:64, 54:46 and 72:28 were obtained.
The electroreduction of oxygen on PdPt alloy nanocubes was studied in O2-saturated 0.5 M H2SO4 solution using the RDE method. The representative ORR polarisation curves for the Pd36Pt64 catalyst modified GC electrode are shown in Fig. 3a, the background currents were recorded at 10 mV s\(^{-1}\) between 0.05 and 1.0 V in Ar-saturated electrolyte and were subtracted from these data. Only the positive-going potential scans are presented and further analysed. For all the PdPt catalysts the ORR polarisation curves were single-waved and well-defined diffusion-limited current plateaus were observed.

The number of electrons transferred per O2 molecule (n) was calculated from the RDE data using the Koutecky–Levich (K–L) equation [22]:

\[
J = J_k + J_d = \frac{1}{nFkC_{O_2}} - \frac{1}{0.62nFD_{O_2}^{1/2}ν^{1/2}k_{L}^{1/2}ω^{1/2}}
\]

where \(J\) is the measured current density, \(J_k\) and \(J_d\) are the kinetic and diffusion-limited current densities, respectively, \(k\) is the rate constant for ORR, \(F\) is the Faraday constant (96,485 C mol\(^{-1}\)), \(ω\) is the rotation rate, \(C_{O_2}\) is the concentration of O2 in the bulk \((1.13 \times 10^{-6} \text{ mol cm}^{-3})\) [23], \(D_{O_2}\) is the diffusion coefficient of O2 \((1.8 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1})\) [23] and \(ν\) is the kinematic viscosity of the solution \((0.01 \text{ cm}^2 \text{ s}^{-1})\) [24]. Fig. 3b presents the K–L plots for Pd36Pt64 catalyst. The value of \(n\) was close to four for all the PdPt catalysts studied (inset of Fig. 3b). This is in agreement with previous studies of O2 reduction on Pd and Pt catalysts in acid media [11, 18, 25–27].

For better comparison of the RDE results the j–E curves of ORR recorded at 1900 rpm are shown in Fig. 3c. Half-wave potentials \((E_{1/2})\) of oxygen reduction for all the alloyed catalysts were higher than that of Pt nanocubes and were comparable to that of cubic Pt nanoparticles (Table 1). The onset potential for Pd36Pt64 was the highest.

Tafel plots were constructed from the RDE data on O2 reduction at 1900 rpm as shown in Fig. 3d. Two regions with distinct slope values were observed (Table 1). In the low overpotential region the slope was close to \(-60 \text{ mV}\) and the rate-determining step of oxygen reduction on oxide-covered PdPt alloys is the first electron transfer. At high overpotentials the Tafel slope value was over \(-130 \text{ mV}\), which is slightly higher than that reported for Pt and Pt electrodes in early work [25, 28]. Similar slope values have been found for different Pd- and Pt-based catalytic materials [18, 26, 27, 29, 30].

The reduction of oxygen on Pd and Pt is a structure-sensitive reaction and the ORR activity depends on the strength of adsorption of the structure-sensitive electrolyte species on the (hkl) facets. It has been demonstrated that the electrocatalytic activity for ORR on Pt(hkl) monocrystals in H2SO4 solution decreases in the following order: Pt(110) > Pt(111) > Pt(100) [28, 31, 32]. For Pd monocrystals the ORR activity dependence on the facets in HClO4 solution was found to increase as follows: Pd(110) > Pd(111) > Pd(100) [33]. The ORR studies on Pd nanocubes have shown enhanced activity towards O2 reduction in sulphuric acid solution, which has been attributed to the predominance of Pt(100) facets on nanocubes [18, 29]. Availability of very small amount of (110) sites on the PdPt alloy nanocube surface might cause a slight change in the catalyst activity in acid electrolyte. The specific activity (SA) of O2 reduction at 0.9 V was calculated from the kinetic

3.3. Oxygen reduction on PdPt catalysts

Table 1

<table>
<thead>
<tr>
<th>Electrode</th>
<th>(A_r) (cm(^2))</th>
<th>Tafel slope (mV)</th>
<th>Tafel slope (mV)</th>
<th>(E_{1/2}) (V)</th>
<th>SA at 0.9 V (mA cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd36Pt64</td>
<td>0.99</td>
<td>-62</td>
<td>-151</td>
<td>0.83</td>
<td>0.089</td>
</tr>
<tr>
<td>Pd54Pt46</td>
<td>0.89</td>
<td>-62</td>
<td>-152</td>
<td>0.81</td>
<td>0.072</td>
</tr>
<tr>
<td>Pd72Pt28</td>
<td>0.55</td>
<td>-66</td>
<td>-136</td>
<td>0.79</td>
<td>0.070</td>
</tr>
<tr>
<td>Pd nanocubes</td>
<td>0.46</td>
<td>-64</td>
<td>-134</td>
<td>0.73</td>
<td>0.078</td>
</tr>
<tr>
<td>Pt nanocubes</td>
<td>0.73</td>
<td>-58</td>
<td>-142</td>
<td>0.84</td>
<td>0.113</td>
</tr>
</tbody>
</table>

* Region I corresponds to low current densities and Region II to high current densities.
The specific activity of Pd\textsubscript{36}Pt\textsubscript{64} was higher than that of Pd nanocubes, but still lower than that of Pt nanocubes. Hoshi et al. have shown that a Pt monolayer on Pd(100) decreases the activity\cite{34}. On the other hand Pd–Pt nanodendrites with 85\% of Pt had higher activity than that of Pt/C\cite{9}. In this work the largest Pt content was 64\% and it can be observed that SA starts to increase, but still does not surpass that of Pt nanocubes. It has been suggested that with higher Pt content the O\textsubscript{2} adsorption is more favourable and thus increases the ORR activity\cite{9}. Apparently, the lower activity of PdPt nanocubes is related to a decrease in the number of dual Pt–Pt sites as compared to monometallic Pt particles. Another reason for lower SA value of PdPt nanocubes might be the adsorption of anions on the metal that is competing with O\textsubscript{2} adsorption. Further work is ongoing to study the ORR kinetics on these PdPt alloy nanocubes in alkaline media.

4. Conclusions

PdPt alloy nanocubes synthesised in this work showed enhanced electrocatalytic activity towards the ORR compared to Pd nanocubes. TEM images showed that PdPt nanoparticles were cubic-shaped. From EDX measurements the composition of Pd and Pt metals in the alloys was determined. The electroreduction of oxygen proceeded via four-electron pathway on all the electrocatalysts studied. The Tafel analysis revealed that the mechanism of O\textsubscript{2} reduction on PdPt alloy nanocubes is similar to that of Pd and Pt cubic nanoparticles.

Conflict of interest

There is no conflict of interest.

Acknowledgements

This research was financially supported by institutional research funding (IUT20-16) of the Estonian Ministry of Education and Research and by the Estonian Research Council (Grant No. 9323) and by Archimedes Foundation (Project No. 3.2.0501.10-0015). KJ thanks the Archimedes Foundation for scholarship. JMF acknowledges financial support from MINECO (Spain), project CTQ2013-44083-P.

References

\begin{thebibliography}{1}
\end{thebibliography}

