This website uses cookies to store user session information. By using our website you consent to our terms of use. Read more
I agree
"Personal research funding: Team grant (PRG)" project PRG4
PRG4 "Emerging Novel Phases in Strongly Frustrated Quantum Magnets (ENIQMA)" (1.01.2018−31.12.2022); Principal Investigator: Raivo Stern; National Institute of Chemical Physics and Biophysics; Financier: Estonian Research Council; Financing: 1 171 375 EUR.
PRG4
Tugevalt frustreeritud kvantmagnetite adapteeruvad olekud (ENIQMA)
Emerging Novel Phases in Strongly Frustrated Quantum Magnets (ENIQMA)
1.01.2018
31.12.2022
R&D project
Personal research funding: Team grant (PRG)
ETIS research fieldETIS research subfieldCERCS research fieldFrascati Manual classificationPercent
4. Natural Sciences and Engineering4.10. Physics and Technical PhysicsP260 Condensed matter: electronic structure, electrical, magnetic and optical properties, supraconductors, magnetic resonance, relaxation, spectroscopy1.3 Physical sciences60,0
4. Natural Sciences and Engineering4.12. Process Technology and Materials ScienceT150 Material technology 2.10 Nano-technology40,0
PeriodFunding from financier
01.01.2018−31.12.2018200 000,00 EUR
01.01.2019−31.12.2019200 000,00 EUR
01.01.2020−31.12.2020257 125,00 EUR
01.01.2021−31.12.2021257 125,00 EUR
01.01.2022−31.12.2022257 125,00 EUR
1 171 375,00 EUR

Erinevate adaptiivse käitumisega keeruliste süsteemide seas on esile kerkimas frustreeritud kvantmagnetid, kuna neis ennustatakse leiduvat aine uusi eksootilisi faase ja olekuid spinn vedelikust ja spinnjääst kuni topoloogiliste isolaatoriteni ja foononklaas elektrikristallideni. Need kollektiivsed olekud võivad osutuda võtmerollides olevateks tuleviku kvanttehnoloogiate arenemisel, olgu need siis innovatiivsete materjalide süntees energia püüdmiseks ja salvestamiseks, kvant-põimumise põhised tehnoloogiad või siis kvantarvutus. Uute looduslike materjalide otsene verifitseerimine on olemasolevas müras, komplekssetes ilmingutes ja lisandite poolt varjatuna äärmiselt väljakutsuv. Me pakume uute kvantmagnetite väljasõelumiseks välja unikaalse ja effektiivse meetodi, kus ainete süntees nii pulbri, kristalli või ALD kilena ning mikroskoopiline tihedusfunktsiooni-teooria on ühendatud moodsaima eksperimentaalse lähenemisega tuuma magnet- ja teraherts-spektroskoopiat ning neitroneid kasutades.
Frustrated spin systems exhibit a variety of behaviors ranging from exotic ground states and novel types of magnetic excitations, to the enhanced magnetocaloric effect and multiferroicity, relevant for applications. A corollary of the vibrant research in this field are new frustrated materials, both bulk and films, that hold promise for novel phases, interesting physics, and potentially useful properties. We propose to perform comprehensive studies of these materials, from both experiment and theory, aiming to provide a realistic picture of their physics on both phenomenological and microscopic level. This combined approach gives us a rare opportunity to obtain novel experimental results, understand them within a suitable theoretical framework, and use this insight for the design of new materials. Our methods include low-temperature thermodynamic and microscopic(AFM-MFM)measurements, NMR and THz spectroscopy, neutron scattering, and DFT calculations combined with microscopic modeling.