See veebileht kasutab küpsiseid kasutaja sessiooni andmete hoidmiseks. Veebilehe kasutamisega nõustute ETISe kasutustingimustega. Loe rohkem
Olen nõus
"Mobilitas tippteadlase uurimistoetus (MTT)" projekt MTT16
MTT16 "Exploiting Nature’s solutions to complex biomedical problems" (1.08.2010−31.07.2015); Vastutav täitja: Jan Johansson; Tallinna Ülikool; Finantseerija: Sihtasutus Eesti Teadusfond , Sihtasutus Eesti Teadusagentuur; Eraldatud summa: 479 337 EUR.
Exploiting Nature’s solutions to complex biomedical problems
Exploiting Nature’s solutions to complex biomedical problems
Exploiting Nature’s solutions to complex biomedical problems
Teadus- ja arendusprojekt
Mobilitas tippteadlase uurimistoetus (MTT)
ETIS valdkondETIS alamvaldkondCERCS valdkondFrascati Manuali valdkondProtsent
1. Bio- ja keskkonnateadused1.1. BiokeemiaP310 Proteiinid, ensümoloogia1.6 Bioteadused50,0
4. Loodusteadused ja tehnika4.16. Biotehnoloogia (loodusteadused ja tehnika)T490 Biotehnoloogia 2.11 Teised tehnika- ja tehnoloogiateadused50,0
Tallinna Ülikoolkoordinaator01.08.2010−31.07.2015
PerioodFinantseerija poolt eraldatud summa
01.08.2015−31.07.20157 500 000,00 EEK (479 337,36 EUR)
479 337,36 EUR

Some proteins change their structure from a native soluble state into beta-sheet fibres. This is associated with e.g. Alzheimer’s and prion diseases, in which amyloid fibrils or their precursors are toxic. However, nature forms high-performance fibres using similar principles; spider dragline silk is the toughest material known. In this project we aim to: (1) prevent the amyloid beta-peptide (Abeta) in Alzheimer’s disease from forming toxic fibrils by low molecular mass ligands that bind to and stabilise soluble Abeta. The ligands are evaluated in vitro and in Drosophila flies that express Abeta in the CNS. Ligands that improve longevity and locomotor function have been identified. (2) Lung surfactant protein C (SP-C) is highly fibrillogenic and an ER-associated domain of proSP-C functions as a chaperone that prevents SP-C aggregation before it has reached its soluble helical state. We aim to study the structure and interactions of this endogenous antiamyloid domain further. (3) Use a recently developed miniature spider silk protein to understand silk fibre structure and formation at a molecular level, and to develop a material for tissue engineering. Our recombinant miniature protein forms meter long fibres that resemble spider silk and support growth of human cells. Given the comparatively simple structure of the miniature protein, signals for attachment of specific cells can be introduced, resulting in a biomaterial that can be optimised for different purposes.