"Mobilitas järeldoktori uurimistoetus" projekt MJD65
MJD65 "Spintroonika rakendustele suunatud dopeeritud dielektriliste oksiidide (ZrO2 ja TiO2) magneetilised uuringud (1.08.2010−31.07.2013)", Mukesh Chandra, Keemilise ja Bioloogilise Füüsika Instituut.
MJD65
Spintroonika rakendustele suunatud dopeeritud dielektriliste oksiidide (ZrO2 ja TiO2) magneetilised uuringud
Magnetic studies on doped dielectric oxides (ZrO2 and TiO2) for spintronic applications
1.08.2010
31.07.2013
Teadus- ja arendusprojekt
Mobilitas järeldoktori uurimistoetus
ETIS klassifikaatorAlamvaldkondCERCS klassifikaatorFrascati Manual’i klassifikaatorProtsent
4. Loodusteadused ja tehnika4.12. Protsessitehnoloogia ja materjaliteadusT153 Keraamilised materjalid ja -pulbrid 2.3. Teised tehnika- ja inseneriteadused (keemiatehnika, lennundustehnika, mehaanika, metallurgia, materjaliteadus ning teised seotud erialad: puidutehnoloogia, geodeesia, tööstuskeemia, toiduainete tehnoloogia, süsteemianalüüs, metallurgia, mäendus, tekstiilitehnoloogia ja teised seotud teadused).34,0
4. Loodusteadused ja tehnika4.10. FüüsikaP260 Tahke aine: elektrooniline struktuur, elektrilised, magneetilised ja optilised omadused, ülijuhtivus, magnetresonants, spektroskoopia1.2. Füüsikateadused (astronoomia ja kosmoseteadus, füüsika ja teised seotud teadused)33,0
4. Loodusteadused ja tehnika4.11. Keemia ja keemiatehnikaP360 Anorgaaniline keemia 2.3. Teised tehnika- ja inseneriteadused (keemiatehnika, lennundustehnika, mehaanika, metallurgia, materjaliteadus ning teised seotud erialad: puidutehnoloogia, geodeesia, tööstuskeemia, toiduainete tehnoloogia, süsteemianalüüs, metallurgia, mäendus, tekstiilitehnoloogia ja teised seotud teadused).33,0
AsutusRollPeriood
Keemilise ja Bioloogilise Füüsika Instituutkoordinaator01.08.2010−31.07.2013
PerioodSumma
01.08.2013−31.07.20131 411 999,00 EEK (90 243,18 EUR)
90 243,18 EUR

Diluted magnetic semiconductors (DMS) and dielectrics (DMD) are a new class of materials in which magnetic dopants replace native cations in ordinary semiconductors/insulators. In case of DMS, the dopants provide localized spins and in some cases free charges, which may arrange into a ferromagnetic ground state at remarkably low concentrations and high temperatures. These materials offer the advantages of semiconductors combined with the non-volatility of ferromagnets and represent the materials foundation of future ‘‘spintronics’’ technologies. Mn doped GaAs, is by far the most studied among the DMS, in particular because of its compatibility with present GaAs–AlAs technology. However, the extreme difficulties in reliably reaching Curie temperatures exceeding room temperature, has stimulated vast experimental activity towards other host materials and in particular towards oxide-based DMS. Recently, there have been several claims of room temperature ferromagnetism in both ZnO and TiO2 doped with various transition metals, while the mechanism behind such long-range coupling still remains actively debated. Due to the compatibility with Si and Si-Ge technologies, very rare experimental work on this material, and few recent theoretical predictions for high temperature ferromagnetism we wish to synthesize, characterize and understand the magnetic properties of doped ZrO2 (bulk and thin films). If we succeed and can induce magnetism in this high k dielectric material, the resulting systems would be excellent candidates for application in future spintronics devices/components.