See veebileht kasutab küpsiseid kasutaja sessiooni andmete hoidmiseks. Veebilehe kasutamisega nõustute ETISe kasutustingimustega. Loe rohkem
Olen nõus
"Mobilitas järeldoktori uurimistoetus" projekt MJD428
MJD428 (MJD428) "Vaakum-ultraviolett spektroskoopia homogeensete molekulaarklastrite ja heterogeensete biomolekul-solvendi klastrite uuringutes (1.08.2013−31.07.2015)", Kuno Kooser, Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Ülikooli Füüsika Instituut.
MJD428
Vaakum-ultraviolett spektroskoopia homogeensete molekulaarklastrite ja heterogeensete biomolekul-solvendi klastrite uuringutes
VACUUM-ULTRAVIOLET SPECTROSCOPY FOR HOMOGENEOUS MOLECULAR CLUSTERS AND MIXED BIOMOLECULE-SOLVENT CLUSTERS
1.08.2013
31.07.2015
Teadus- ja arendusprojekt
Mobilitas järeldoktori uurimistoetus
ETIS klassifikaatorAlamvaldkondCERCS klassifikaatorFrascati Manual’i klassifikaatorProtsent
4. Loodusteadused ja tehnika4.10. FüüsikaP230 Aatomi- ja molekulaarfüüsika 1.2. Füüsikateadused (astronoomia ja kosmoseteadus, füüsika ja teised seotud teadused)100,0
PerioodSumma
01.08.2015−31.07.201562 720,00 EUR
62 720,00 EUR

The proteins called histones compact DNA into the microscopic space of the eukaryotic nucleus. However, the constituents of proteins, amino acids belong to the repertoire of molecules relevant in the context of biological radiation damage. Many fragmentation studies with mass spectroscopy methods have been performed with isolated biomolecules in the gas phase. Nevertheless, the question is raised, to what extent radiation-induced fragmentation studies on a single molecule are relevant for fields such as biological radiation damage. In other words, the influence of the chemical environment on the dissociation is not possible to consider. Additionally, the electronic structure of a biomolecule can be strongly altered by the chemical environment, for example, in lowered ionization potential. Alternative attempt to simulate a chemical environment of the biomolecule of interest is to condesate it into a cluster. Since the main component of living cells is water, it would be reasonable to consider molecule-water clusters. The specific motivation of this project is to use the PhotoElectron-PhotoIon COincindece (PEPICO) setup for studying the homogeneous clusters of amino acid molecules and mixed with (or solvated in) water molecules in order to obtain the information on size-dependent geometrical configurations, molecular dynamics and stability of the clusters produced by the inert gas aggregation technique. In order to explore the electronic properties of the microclusters as a function of their size it should be mentioned, that conventionally mass selection means filtering of (ionized) clusters before they enter the interaction region, in which case one-atom accuracy can mean the loss of several orders of magnitude in intensity – the reason why electron spectroscopy becomes unfeasible. In PEPICO, by contrast, the mass selection takes place after the produced clusters have been photoionized, thus utilizing the whole mass range of the produced clusters simultaneously.