"Mobilitas tippteadlase uurimistoetus" projekt MTT77
MTT77 "Spin-lattice coupling in magnetism: from quantum magnets to multiferroics (1.08.2012−31.07.2015)", Alexander Tsirlin, Keemilise ja Bioloogilise Füüsika Instituut.
MTT77
Spin-lattice coupling in magnetism: from quantum magnets to multiferroics
Spin-lattice coupling in magnetism: from quantum magnets to multiferroics
1.08.2012
31.07.2015
Teadus- ja arendusprojekt
Mobilitas tippteadlase uurimistoetus
ValdkondAlamvaldkondCERCS erialaFrascati Manual’i erialaProtsent
4. Loodusteadused ja tehnika4.10. FüüsikaP260 Tahke aine: elektrooniline struktuur, elektrilised, magneetilised ja optilised omadused, ülijuhtivus, magnetresonants, spektroskoopia1.2. Füüsikateadused (astronoomia ja kosmoseteadus, füüsika ja teised seotud teadused)50,0
4. Loodusteadused ja tehnika4.10. FüüsikaP250 Tahke aine: struktuur, termilised ja mehhaanilised omadused, kristallograafia, phase equilibria1.2. Füüsikateadused (astronoomia ja kosmoseteadus, füüsika ja teised seotud teadused)50,0
AsutusRollPeriood
Keemilise ja Bioloogilise Füüsika Instituutkoordinaator01.08.2012−31.07.2015
PerioodSumma
01.08.2012−31.07.2015384 000,00 EUR
384 000,00 EUR
Materjalitehnoloogiad

This research project puts forward the joint application of experimental and computational techniques to understanding the interplay between magnetism (spins) and crystal structure (lattice) in quantum magnets and unconventional multiferroics. Both groups of materials are in the focus of present-day research devoted to strongly correlated electronic systems, exotic ground states, and unusual low-temperature properties. In these materials, the lattice is traditionally considered as a fixed and predefined parameter, although most lattices reveal a non-negligible response to the magnetic phenomena. Such mutual interplay of spins and lattice has important implications: for example, the formation of electric polarization in unconventional multiferroics. We will use both experimental, computational, and theoretical approaches to investigate the spin-lattice coupling in several representative materials featuring different chemical composition and structural elements. Our ultimate goals are the evaluation of the full spin-lattice Hamiltonian for specific magnetic systems, and the microscopic insight into the spin-lattice phenomena.