See veebileht kasutab küpsiseid kasutaja sessiooni andmete hoidmiseks. Veebilehe kasutamisega nõustute ETISe kasutustingimustega. Loe rohkem
Olen nõus
"Mobilitas järeldoktori uurimistoetus (MJD)" projekt MJD7
MJD7 (MJD7) "Studies of the neurotoxic mechanisms of mutated versions of APP related to Familial Alzheimer’s Disease (1.08.2009−31.07.2012)", Sandra Zetterström Fernaeus, Tallinna Ülikool, Tallinna Ülikool, Matemaatika ja Loodusteaduste Instituut.
MJD7
Studies of the neurotoxic mechanisms of mutated versions of APP related to Familial Alzheimer’s Disease
1.08.2009
31.07.2012
Teadus- ja arendusprojekt
Mobilitas järeldoktori uurimistoetus (MJD)
ETIS klassifikaatorAlamvaldkondCERCS klassifikaatorFrascati Manual’i klassifikaatorProtsent
1. Bio- ja keskkonnateadused1.1. BiokeemiaP310 Proteiinid, ensümoloogia1.5. Bioteadused (bioloogia, botaanika, bakterioloogia, mikrobioloogia, zooloogia, entomoloogia, geneetika, biokeemia, biofüüsika jt50,0
1. Bio- ja keskkonnateadused1.1. BiokeemiaP320 Nukleiinhappesüntees, proteiinisüntees 1.5. Bioteadused (bioloogia, botaanika, bakterioloogia, mikrobioloogia, zooloogia, entomoloogia, geneetika, biokeemia, biofüüsika jt50,0
AsutusRollPeriood
Tallinna Ülikoolkoordinaator01.08.2009−31.07.2012
Tallinna Ülikool, Matemaatika ja Loodusteaduste Instituutkoordinaator01.08.2009−31.07.2012
PerioodSumma
01.08.2012−31.07.20121 311 862,00 EEK (83 843,26 EUR)
83 843,26 EUR

The aim of this project is to widen the understanding of the neurotoxic mechanisms for amyloid precursor protein (APP) mutations related to early-onset familial Alzheimer’s disease (FAD). The study will be focused on the mechanisms of the V717 “London” FAD mutated APP, particularly of V717G APP, that might promote oxidative damage in plasma membranes, influence the signalling and energetic processes and other life-span features in nerve cells. Second, the project aims to understand the role of the methionine-722 in APP (Met722) oxidative state in the lipid-initiated oxidative cascades in cells expressing the V717G APP. In membranes of human temporal cortex V717G APP peptide fragment stimulated G-proteins by 6-fold, as compared to wild-type APP, presumably through an oxidative mechanism. This effect was completely abolished when the S atom in Met722 was substituted for a -CH2-group. Met35 within A??( 1-42) is suggested to interact with Gly33 and participate in formation of peroxyl free radicals. We hypothesise that Gly717 in APP similarly interacts with Met722. We will establish neuronal cell lines stably expressing V717G and V717G/M722A APP under the control of a tetracycline induced promotor. Third, the cells will be analyzed for neurotoxic mechanisms and apoptotic signals. This project would help us to explain the specific oxidative and neurotoxic mechanisms of London-mutated APP and help to develop new strategies for early treatment and prevention of various FAD phenotypes.