This website uses cookies to store user session information. By using our website you consent to our terms of use. Read more
I agree
"Mobilitas Pluss Postdoctoral Researcher Grant / Mobilitas Pluss järeldoktoritoetus" project MOBJD556
MOBJD556 "Elucidating the heavy metal-induced hetero- and collateral resistance in bacteria to antibiotics at the single-cell genomic, transcriptomic and phenotypic levels (1.02.2020−31.01.2022)", Simona Bartkova, Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology.
MOBJD556
Raskematellide poolt põhjustatud antibiootikumide hetero- ja kaasresistentsuse uurimine bakterites ühe raku genoomi, transkriptoomi ja fenotüübi tasemel
Elucidating the heavy metal-induced hetero- and collateral resistance in bacteria to antibiotics at the single-cell genomic, transcriptomic and phenotypic levels
1.02.2020
31.01.2022
R&D project
Mobilitas Pluss Postdoctoral Researcher Grant / Mobilitas Pluss järeldoktoritoetus
ETIS classificationSubfieldCERCS classificationFrascati Manual classificationPercent
1. Biosciences and Environment1.2. MicrobiologyB230 Microbiology, bacteriology, virology, mycology 1.6 Biological sciences100,0
PeriodSum
01.02.2020−31.01.202286 117,20 EUR
86 117,20 EUR

Antibiootikumiresistentsuse levik on ülemaailmne probleem. Selletõttu on vajalik resistentsuse tekkemehhanismide uurimine, et probleemi lahendada, muidu antibiootikumid ükspäev lihtsalt ei tööta. Kuid selle uurimine on keeruline. Rolli mängivad siin nii ülemaailmne antibiootikumide liigkasutamine kui ka teised aspektid, näiteks raskematellide (RM) reostus. Seetõttu olekski vaja teada rohkem mehhanismidest kuidas RM-id ja antibiootikumid kaas-resistentsust üksteise suhtes tekitavad. Selle projekti eesmärk on kokku panna kaasaegsed tilga mikrofluidika võimalused genoomika ja transkriptoomika võimalusega, et uurida kõrg-läbilaskvalt neid mehhanisme ühe raku tasandil. Tulemused annavad uut vajalikku infot kaas-resistentsuse tekkemehhanismide kohta.
There is an ever-growing concern of the worldwide increase in microbial antibiotic resistance. Global efforts focus on the bacterial mechanisms of antibiotic resistance to avoid the onset of a frightening post-antibiotic era. This grave threat to mankind reflects the worldwide overuse of antibiotics, but also environmental pollutants, such as heavy metals (HMs), that contribute to the microbial resistance challenge. Collateral resistance between HMs and antibiotics, and underlying mechanisms of hetero-resistance require more research. The aim of this project is to combine the recently developed droplet microfluidic technology with sequencing and transcriptomics approaches to optimize and perform a high-throughput genetic, transcriptomic and phenotypic analyses of single bacterial cells exposed to HMs and antibiotics. Our results will provide novel insights into mechanisms underlying such collateral resistance, an issue whose elucidation may have broad implications for biomedicine.