"Eesti Teadusfondi järeldoktori grandid" projekt JD102
JD102 (JD102) "Nanoparticle-metaloxide compounds for optical and sensing applications (15.07.2008−14.07.2011)", Leonid Dolgov, Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Ülikooli Füüsika Instituut.
JD102
Nanoparticle-metaloxide compounds for optical and sensing applications
15.07.2008
14.07.2011
Teadus- ja arendusprojekt
Eesti Teadusfondi järeldoktori grandid
ETIS klassifikaatorAlamvaldkondCERCS klassifikaatorFrascati Manual’i klassifikaatorProtsent
4. Loodusteadused ja tehnika4.10. FüüsikaP260 Tahke aine: elektrooniline struktuur, elektrilised, magneetilised ja optilised omadused, ülijuhtivus, magnetresonants, spektroskoopia1.2. Füüsikateadused (astronoomia ja kosmoseteadus, füüsika ja teised seotud teadused)100,0
PerioodSumma
01.01.2008−31.12.20081 570 000,00 EEK (100 341,29 EUR)
100 341,29 EUR

Designing of materials possessing nanoscale structure is a powerful tool to achieve flexible structural, optical and electrical properties. Within the current project it is intended to design the following hybrid compounds: a) Metal-oxides containing nanometer-sized noble metal particles and rare earth (RE) ions (as cation impurities) as novel materials for applications such as enhanced fluorescence and Raman scattering, fluorescence-labeling of molecules, light up-conversion, etc. b) Nitrogen (and other anion)-doped metal-oxides as materials with enhanced photocatalytic properties containing RE ions for optical probing of primary processes of photocatalysis. c) Metal-oxide films and fibers containing carbon nanotubes. Such composition allows control of its electrical, optical as well as mechanical properties. We intend to use such composites for gas sensing in environment. The main method of preparation of metal-oxide (TiO2, ZrO2, HfO2) based composites will be the sol-gel technology (including dip-coating and pyrolysis ). In some cases, the atomic layer deposition (ALD) might prove to be superior. In the case of the sol-gel approach the doping is achieved via molecular-level mixing of proper precursor materials within a solution. For a more thorough control of the concentration and distribution of RE and anion impurities the ion implantation technique will be applied. Material characterization will be performed by using of photoluminescence, Raman-scattering, XRD, AFM, SEM and XPS methods supported by cryogenics techniques if necessary. The main tool for functionalization of materials prepared will be carried out by optical and spectroscopic methods, supported with electrical measurements. Expected novel results and technologies: novel luminescent materials; contribution to the understanding of the enhanced photocatalytic behavior of TiO2:N; modelling of the sensitivity of Sm: TiO2 nanomaterials to molecular oxygen; development of optical nanofibres tehnology.