See veebileht kasutab küpsiseid kasutaja sessiooni andmete hoidmiseks. Veebilehe kasutamisega nõustute ETISe kasutustingimustega. Loe rohkem
Olen nõus
"Mobilitas järeldoktori uurimistoetus (MJD)" projekt MJD5
MJD5 (MJD5) "Development of a Microfluidic lab-on-chip for bioimpedance measurements on droplet-based bioreactors (1.09.2009−31.08.2012)", Athanasios Giannitsis, Tallinna Tehnikaülikool, Tallinna Tehnikaülikool, Infotehnoloogia teaduskond.
Development of a Microfluidic lab-on-chip for bioimpedance measurements on droplet-based bioreactors
Teadus- ja arendusprojekt
Mobilitas järeldoktori uurimistoetus (MJD)
ETIS klassifikaatorAlamvaldkondCERCS klassifikaatorFrascati Manual’i klassifikaatorProtsent
4. Loodusteadused ja tehnika4.8. Elektrotehnika ja elektroonikaT170 Elektroonika 2.2. Elektroenergeetika, elektroonika (elektroenergeetika, elektroonika, sidetehnika, arvutitehnika ja teised seotud teadused)100,0
Tallinna Tehnikaülikoolkoordinaator01.09.2009−31.08.2012
Tallinna Tehnikaülikool, Infotehnoloogia teaduskondkoordinaator01.09.2009−31.08.2012
01.09.2012−31.08.20121 570 000,00 EEK (100 341,29 EUR)
100 341,29 EUR

Microfluidic lab-on-chip devices integrate laboratory functions such as measurements and analysis on a single chip. These devices are the future instruments for biochemical and medical analysis and create a huge market for the upcoming decades. A droplet-based-bioreactor provides the potential of cultivating cells in microdroplets and monitoring their metabolism. Bioimpedance spectroscopy is a well-established and efficient method for sensing cells. Microelectrodes and supporting electronics can be integrated into the microfluidic chip. The aim of this project is to manufacture a droplet-basedbioreactor lab-on-chip that measures the bioimpedance of the droplets by means of a signal processing approach. Digital pulses with predefined spectral properties will be used to assess the passive electrical properties of cells. Analogue electronics will be integrated in the labon- chip for conditioning the signals before performing online analysis with an analyzer or a signal processor. The droplets will be generated by pressure in a T-shaped microchannel and then enter into an array of microelectrodes that forms a sequence of capacitors along the microchannel. The droplet generation rate can be up to ten droplets per second, which enables high throughput processing for this class of devices. The droplets will be separated by immiscible oil, which prevents droplets from merging and also isolates their content from contaminations. Gas, like oxygen or carbon dioxide, diffuses freely through tube walls and oil, which is essential for cell metabolism. This research project is highly multidisciplinary and combines microfluidics and electronics. Also, it ensures the transfer of knowledge to Tallinn University of Technology.